Cargando…

A Collaborative Brain-Computer Interface Framework for Enhancing Group Detection Performance of Dynamic Visual Targets

The superiority of collaborative brain-computer interface (cBCI) in performance enhancement makes it an effective way to break through the performance bottleneck of the BCI-based dynamic visual target detection. However, the existing cBCIs focus on multi-mind information fusion with a static and uni...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Xiyu, Zeng, Ying, Tong, Li, Shu, Jun, Yang, Qiang, Kou, Jian, Sun, Minghua, Yan, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789438/
https://www.ncbi.nlm.nih.gov/pubmed/35087580
http://dx.doi.org/10.1155/2022/4752450
Descripción
Sumario:The superiority of collaborative brain-computer interface (cBCI) in performance enhancement makes it an effective way to break through the performance bottleneck of the BCI-based dynamic visual target detection. However, the existing cBCIs focus on multi-mind information fusion with a static and unidirectional mode, lacking the information interaction and learning guidance among multiple agents. Here, we propose a novel cBCI framework to enhance the group detection performance of dynamic visual targets. Specifically, a mutual learning domain adaptation network (MLDANet) with information interaction, dynamic learning, and individual transferring abilities is developed as the core of the cBCI framework. MLDANet takes P3-sSDA network as individual network unit, introduces mutual learning strategy, and establishes a dynamic interactive learning mechanism between individual networks and collaborative decision-making at the neural decision level. The results indicate that the proposed MLDANet-cBCI framework can achieve the best group detection performance, and the mutual learning strategy can improve the detection ability of individual networks. In MLDANet-cBCI, the F1 scores of collaborative detection and individual network are 0.12 and 0.19 higher than those in the multi-classifier cBCI, respectively, when three minds collaborate. Thus, the proposed framework breaks through the traditional multi-mind collaborative mode and exhibits a superior group detection performance of dynamic visual targets, which is also of great significance for the practical application of multi-mind collaboration.