Cargando…
Epilepsy Detection Based on Variational Mode Decomposition and Improved Sample Entropy
Epilepsy detection based on electroencephalogram (EEG) signal is of great significance to diagnosis and treatment of epilepsy. The denoised EEG signal is adopted by most traditional epilepsy detection methods. But due to nonideal denoising ability, the loss of local information and residual noise wi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789442/ https://www.ncbi.nlm.nih.gov/pubmed/35087582 http://dx.doi.org/10.1155/2022/6180441 |
_version_ | 1784639764763246592 |
---|---|
author | Ru, Yandong Li, Jinbao Chen, Hangyu Li, Jiacheng |
author_facet | Ru, Yandong Li, Jinbao Chen, Hangyu Li, Jiacheng |
author_sort | Ru, Yandong |
collection | PubMed |
description | Epilepsy detection based on electroencephalogram (EEG) signal is of great significance to diagnosis and treatment of epilepsy. The denoised EEG signal is adopted by most traditional epilepsy detection methods. But due to nonideal denoising ability, the loss of local information and residual noise will occur, resulting in detection performance degradation. To solve the problem, the paper proposed an epilepsy detection method in noisy environment. Although epileptic signals and nonepileptic signals have some discrimination, they need to overcome the interference of noise. Hence, the improved sample entropy and phase synchronization indexes of corresponding 2 intrinsic mode functions (IMFs) caused by variational mode decomposition (VMD) are proposed as features, which can reduce the impact of noise on detection performance. The experimental results show that the accuracy, sensitivity, and specificity are 91.78%, 91.27%, and 93.61%, respectively. It can be used as an auxiliary method for clinical treatment of epilepsy. |
format | Online Article Text |
id | pubmed-8789442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-87894422022-01-26 Epilepsy Detection Based on Variational Mode Decomposition and Improved Sample Entropy Ru, Yandong Li, Jinbao Chen, Hangyu Li, Jiacheng Comput Intell Neurosci Research Article Epilepsy detection based on electroencephalogram (EEG) signal is of great significance to diagnosis and treatment of epilepsy. The denoised EEG signal is adopted by most traditional epilepsy detection methods. But due to nonideal denoising ability, the loss of local information and residual noise will occur, resulting in detection performance degradation. To solve the problem, the paper proposed an epilepsy detection method in noisy environment. Although epileptic signals and nonepileptic signals have some discrimination, they need to overcome the interference of noise. Hence, the improved sample entropy and phase synchronization indexes of corresponding 2 intrinsic mode functions (IMFs) caused by variational mode decomposition (VMD) are proposed as features, which can reduce the impact of noise on detection performance. The experimental results show that the accuracy, sensitivity, and specificity are 91.78%, 91.27%, and 93.61%, respectively. It can be used as an auxiliary method for clinical treatment of epilepsy. Hindawi 2022-01-18 /pmc/articles/PMC8789442/ /pubmed/35087582 http://dx.doi.org/10.1155/2022/6180441 Text en Copyright © 2022 Yandong Ru et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ru, Yandong Li, Jinbao Chen, Hangyu Li, Jiacheng Epilepsy Detection Based on Variational Mode Decomposition and Improved Sample Entropy |
title | Epilepsy Detection Based on Variational Mode Decomposition and Improved Sample Entropy |
title_full | Epilepsy Detection Based on Variational Mode Decomposition and Improved Sample Entropy |
title_fullStr | Epilepsy Detection Based on Variational Mode Decomposition and Improved Sample Entropy |
title_full_unstemmed | Epilepsy Detection Based on Variational Mode Decomposition and Improved Sample Entropy |
title_short | Epilepsy Detection Based on Variational Mode Decomposition and Improved Sample Entropy |
title_sort | epilepsy detection based on variational mode decomposition and improved sample entropy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789442/ https://www.ncbi.nlm.nih.gov/pubmed/35087582 http://dx.doi.org/10.1155/2022/6180441 |
work_keys_str_mv | AT ruyandong epilepsydetectionbasedonvariationalmodedecompositionandimprovedsampleentropy AT lijinbao epilepsydetectionbasedonvariationalmodedecompositionandimprovedsampleentropy AT chenhangyu epilepsydetectionbasedonvariationalmodedecompositionandimprovedsampleentropy AT lijiacheng epilepsydetectionbasedonvariationalmodedecompositionandimprovedsampleentropy |