Cargando…
A self-supervised domain-general learning framework for human ventral stream representation
Anterior regions of the ventral visual stream encode substantial information about object categories. Are top-down category-level forces critical for arriving at this representation, or can this representation be formed purely through domain-general learning of natural image structure? Here we prese...
Autores principales: | Konkle, Talia, Alvarez, George A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789817/ https://www.ncbi.nlm.nih.gov/pubmed/35078981 http://dx.doi.org/10.1038/s41467-022-28091-4 |
Ejemplares similares
-
A Visual Encoding Model Based on Contrastive Self-Supervised Learning for Human Brain Activity along the Ventral Visual Stream
por: Li, Jingwei, et al.
Publicado: (2021) -
The transition in the ventral stream from feature to real-world entity representations
por: Orban, Guy A., et al.
Publicado: (2014) -
Accurate prediction of molecular targets using a self-supervised image representation learning framework
por: Zeng, Xiangxiang, et al.
Publicado: (2022) -
Self-supervised representation learning for surgical activity recognition
por: Paysan, Daniel, et al.
Publicado: (2021) -
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022)