Cargando…
Interaction data are identifiable even across long periods of time
Fine-grained records of people’s interactions, both offline and online, are collected at large scale. These data contain sensitive information about whom we meet, talk to, and when. We demonstrate here how people’s interaction behavior is stable over long periods of time and can be used to identify...
Autores principales: | Creţu, Ana-Maria, Monti, Federico, Marrone, Stefano, Dong, Xiaowen, Bronstein, Michael, de Montjoye, Yves-Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789822/ https://www.ncbi.nlm.nih.gov/pubmed/35078995 http://dx.doi.org/10.1038/s41467-021-27714-6 |
Ejemplares similares
-
The risk of re-identification remains high even in country-scale location datasets
por: Farzanehfar, Ali, et al.
Publicado: (2021) -
Maximum entropy of cycles of even period
por: King, Deborah M, et al.
Publicado: (2001) -
The Neuropeptide PDF Is Crucial for Delaying the Phase of
Drosophila’s Evening Neurons Under Long Zeitgeber
Periods
por: Vaze, Koustubh M., et al.
Publicado: (2021) -
On the difficulty of achieving Differential Privacy in practice: user-level guarantees in aggregate location data
por: Houssiau, Florimond, et al.
Publicado: (2022) -
Concerns about using a digital mask to safeguard patient privacy
por: Meeus, Matthieu, et al.
Publicado: (2023)