Cargando…

A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity

Silicon monoxide (SiO) is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g(−1). The studies to date have been limited to electrodes with a relatively low mass loading (< 3.5 mg cm(−2)), which has seriously restricted the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Jiang, Wang, Tao, Wang, Lei, Peng, Lele, Fu, Shubin, Zhang, Meng, Cao, Jinhui, Xu, Xiang, Liang, Junfei, Fei, Huilong, Duan, Xidong, Lu, Bingan, Wang, Yiliu, Zhu, Jian, Duan, Xiangfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789978/
https://www.ncbi.nlm.nih.gov/pubmed/35076763
http://dx.doi.org/10.1007/s40820-022-00790-z
_version_ 1784639889247043584
author Zhong, Jiang
Wang, Tao
Wang, Lei
Peng, Lele
Fu, Shubin
Zhang, Meng
Cao, Jinhui
Xu, Xiang
Liang, Junfei
Fei, Huilong
Duan, Xidong
Lu, Bingan
Wang, Yiliu
Zhu, Jian
Duan, Xiangfeng
author_facet Zhong, Jiang
Wang, Tao
Wang, Lei
Peng, Lele
Fu, Shubin
Zhang, Meng
Cao, Jinhui
Xu, Xiang
Liang, Junfei
Fei, Huilong
Duan, Xidong
Lu, Bingan
Wang, Yiliu
Zhu, Jian
Duan, Xiangfeng
author_sort Zhong, Jiang
collection PubMed
description Silicon monoxide (SiO) is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g(−1). The studies to date have been limited to electrodes with a relatively low mass loading (< 3.5 mg cm(−2)), which has seriously restricted the areal capacity and its potential in practical devices. Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practical technologies. Herein, we report a monolithic three-dimensional (3D) large-sheet holey graphene framework/SiO (LHGF/SiO) composite for high-mass-loading electrode. By specifically using large-sheet holey graphene building blocks, we construct LHGF with super-elasticity and exceptional mechanical robustness, which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading. Additionally, the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport. By systematically tailoring microstructure design, we show the LHGF/SiO anode with a mass loading of 44 mg cm(−2) delivers a high areal capacity of 35.4 mAh cm(−2) at a current of 8.8 mA cm(−2) and retains a capacity of 10.6 mAh cm(−2) at 17.6 mA cm(−2), greatly exceeding those of the state-of-the-art commercial or research devices. Furthermore, we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm(−2) delivers an unprecedented areal capacity up to 140.8 mAh cm(−2). The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-022-00790-z.
format Online
Article
Text
id pubmed-8789978
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Nature Singapore
record_format MEDLINE/PubMed
spelling pubmed-87899782022-02-02 A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity Zhong, Jiang Wang, Tao Wang, Lei Peng, Lele Fu, Shubin Zhang, Meng Cao, Jinhui Xu, Xiang Liang, Junfei Fei, Huilong Duan, Xidong Lu, Bingan Wang, Yiliu Zhu, Jian Duan, Xiangfeng Nanomicro Lett Article Silicon monoxide (SiO) is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g(−1). The studies to date have been limited to electrodes with a relatively low mass loading (< 3.5 mg cm(−2)), which has seriously restricted the areal capacity and its potential in practical devices. Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practical technologies. Herein, we report a monolithic three-dimensional (3D) large-sheet holey graphene framework/SiO (LHGF/SiO) composite for high-mass-loading electrode. By specifically using large-sheet holey graphene building blocks, we construct LHGF with super-elasticity and exceptional mechanical robustness, which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading. Additionally, the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport. By systematically tailoring microstructure design, we show the LHGF/SiO anode with a mass loading of 44 mg cm(−2) delivers a high areal capacity of 35.4 mAh cm(−2) at a current of 8.8 mA cm(−2) and retains a capacity of 10.6 mAh cm(−2) at 17.6 mA cm(−2), greatly exceeding those of the state-of-the-art commercial or research devices. Furthermore, we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm(−2) delivers an unprecedented areal capacity up to 140.8 mAh cm(−2). The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-022-00790-z. Springer Nature Singapore 2022-01-25 /pmc/articles/PMC8789978/ /pubmed/35076763 http://dx.doi.org/10.1007/s40820-022-00790-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Zhong, Jiang
Wang, Tao
Wang, Lei
Peng, Lele
Fu, Shubin
Zhang, Meng
Cao, Jinhui
Xu, Xiang
Liang, Junfei
Fei, Huilong
Duan, Xidong
Lu, Bingan
Wang, Yiliu
Zhu, Jian
Duan, Xiangfeng
A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
title A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
title_full A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
title_fullStr A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
title_full_unstemmed A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
title_short A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
title_sort silicon monoxide lithium-ion battery anode with ultrahigh areal capacity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8789978/
https://www.ncbi.nlm.nih.gov/pubmed/35076763
http://dx.doi.org/10.1007/s40820-022-00790-z
work_keys_str_mv AT zhongjiang asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT wangtao asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT wanglei asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT penglele asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT fushubin asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT zhangmeng asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT caojinhui asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT xuxiang asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT liangjunfei asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT feihuilong asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT duanxidong asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT lubingan asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT wangyiliu asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT zhujian asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT duanxiangfeng asiliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT zhongjiang siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT wangtao siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT wanglei siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT penglele siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT fushubin siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT zhangmeng siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT caojinhui siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT xuxiang siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT liangjunfei siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT feihuilong siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT duanxidong siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT lubingan siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT wangyiliu siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT zhujian siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity
AT duanxiangfeng siliconmonoxidelithiumionbatteryanodewithultrahigharealcapacity