Cargando…
MiRNA-Drug Resistance Association Prediction Through the Attentive Multimodal Graph Convolutional Network
MiRNAs can regulate genes encoding specific proteins which are related to the efficacy of drugs, and predicting miRNA-drug resistance associations is of great importance. In this work, we propose an attentive multimodal graph convolution network method (AMMGC) to predict miRNA-drug resistance associ...
Autores principales: | Niu, Yanqing, Song, Congzhi, Gong, Yuchong, Zhang, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790023/ https://www.ncbi.nlm.nih.gov/pubmed/35095506 http://dx.doi.org/10.3389/fphar.2021.799108 |
Ejemplares similares
-
GCMM: graph convolution network based on multimodal attention mechanism for drug repurposing
por: Zhang, Fan, et al.
Publicado: (2022) -
A network embedding-based multiple information integration method for the MiRNA-disease association prediction
por: Gong, Yuchong, et al.
Publicado: (2019) -
Predicting miRNA-disease associations via layer attention graph convolutional network model
por: Han, Han, et al.
Publicado: (2022) -
Identifying SM-miRNA associations based on layer attention graph convolutional network and matrix decomposition
por: Ni, Jie, et al.
Publicado: (2022) -
Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction
por: Zhu, Rongxiang, et al.
Publicado: (2020)