Cargando…
Pediatric sepsis phenotypes for enhanced therapeutics: An application of clustering to electronic health records
OBJECTIVE: The heterogeneity of pediatric sepsis patients suggests the potential benefits of clustering analytics to derive phenotypes with distinct host response patterns that may help guide personalized therapeutics. We evaluate the relative performance of latent class analysis (LCA) and K‐means,...
Autores principales: | Koutroulis, Ioannis, Velez, Tom, Wang, Tony, Yohannes, Seife, Galarraga, Jessica E., Morales, Joseph A., Freishtat, Robert J., Chamberlain, James M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790108/ https://www.ncbi.nlm.nih.gov/pubmed/35112102 http://dx.doi.org/10.1002/emp2.12660 |
Ejemplares similares
-
Identification and Prediction of Clinical Phenotypes in Hospitalized Patients With COVID-19: Machine Learning From Medical Records
por: Velez, Tom, et al.
Publicado: (2023) -
Sepsis Immunometabolism: From Defining Sepsis to Understanding How Energy Production Affects Immune Response
por: Koutroulis, Ioannis, et al.
Publicado: (2019) -
The Impact of Automated Electronic Surveillance of Electronic Medical Records on Pediatric Inpatient Care
por: Emmanuel, Jais, et al.
Publicado: (2018) -
Updates on pediatric sepsis
por: Cruz, Andrea T., et al.
Publicado: (2020) -
Big Data and Pediatric Acute Kidney Injury: The Promise of Electronic Health Record Systems
por: Sutherland, Scott M.
Publicado: (2020)