Cargando…
A Hybrid Framework for Intrusion Detection in Healthcare Systems Using Deep Learning
The unbounded increase in network traffic and user data has made it difficult for network intrusion detection systems to be abreast and perform well. Intrusion Systems are crucial in e-healthcare since the patients' medical records should be kept highly secure, confidential, and accurate. Any c...
Autores principales: | Akshay Kumaar, M., Samiayya, Duraimurugan, Vincent, P. M. Durai Raj, Srinivasan, Kathiravan, Chang, Chuan-Yu, Ganesh, Harish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790147/ https://www.ncbi.nlm.nih.gov/pubmed/35096763 http://dx.doi.org/10.3389/fpubh.2021.824898 |
Ejemplares similares
-
A framework to distinguish healthy/cancer renal CT images using the fused deep features
por: Rajinikanth, Venkatesan, et al.
Publicado: (2023) -
Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models
por: K, Ashwini, et al.
Publicado: (2021) -
MRI brain tumor segmentation using residual Spatial Pyramid Pooling-powered 3D U-Net
por: Vijay, Sanchit, et al.
Publicado: (2023) -
A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification
por: Joshi, Vinayak Ravi, et al.
Publicado: (2022) -
ResMem-Net: memory based deep CNN for image memorability estimation
por: Praveen, Arockia, et al.
Publicado: (2021)