Cargando…
Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging
BACKGROUND AND PURPOSE: In preclinical radiation studies, there is great interest in quantifying the radiation response of healthy tissues. Manual contouring has significant impact on the treatment-planning because of variation introduced by human interpretation. This results in inconsistencies when...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790504/ https://www.ncbi.nlm.nih.gov/pubmed/35111981 http://dx.doi.org/10.1016/j.phro.2022.01.002 |
_version_ | 1784640026648248320 |
---|---|
author | Lappas, Georgios Staut, Nick Lieuwes, Natasja G. Biemans, Rianne Wolfs, Cecile J.A. van Hoof, Stefan J. Dubois, Ludwig J. Verhaegen, Frank |
author_facet | Lappas, Georgios Staut, Nick Lieuwes, Natasja G. Biemans, Rianne Wolfs, Cecile J.A. van Hoof, Stefan J. Dubois, Ludwig J. Verhaegen, Frank |
author_sort | Lappas, Georgios |
collection | PubMed |
description | BACKGROUND AND PURPOSE: In preclinical radiation studies, there is great interest in quantifying the radiation response of healthy tissues. Manual contouring has significant impact on the treatment-planning because of variation introduced by human interpretation. This results in inconsistencies when assessing normal tissue volumes. Evaluation of these discrepancies can provide a better understanding on the limitations of the current preclinical radiation workflow. In the present work, interobserver variability (IOV) in manual contouring of rodent normal tissues on cone-beam Computed Tomography, in head and thorax regions was evaluated. MATERIALS AND METHODS: Two animal technicians performed manually (assisted) contouring of normal tissues located within the thorax and head regions of rodents, 20 cases per body site. Mean surface distance (MSD), displacement of center of mass (ΔCoM), DICE similarity coefficient (DSC) and the 95th percentile Hausdorff distance (HD(95)) were calculated between the contours of the two observers to evaluate the IOV. RESULTS: For the thorax organs, right lung had the lowest IOV (ΔCoM: 0.08 ± 0.04 mm, DSC: 0.96 ± 0.01, MSD:0.07 ± 0.01 mm, HD(95):0.20 ± 0.03 mm) while spinal cord, the highest IOV (ΔCoM:0.5 ± 0.3 mm, DSC:0.81 ± 0.05, MSD:0.14 ± 0.03 mm, HD(95):0.8 ± 0.2 mm). Regarding head organs, right eye demonstrated the lowest IOV (ΔCoM:0.12 ± 0.08 mm, DSC: 0.93 ± 0.02, MSD: 0.15 ± 0.04 mm, HD(95): 0.29 ± 0.07 mm) while complete brain, the highest IOV (ΔCoM: 0.2 ± 0.1 mm, DSC: 0.94 ± 0.02, MSD: 0.3 ± 0.1 mm, HD(95): 0.5 ± 0.1 mm). CONCLUSIONS: Our findings reveal small IOV, within the sub-mm range, for thorax and head normal tissues in rodents. The set of contours can serve as a basis for developing an automated delineation method for e.g., treatment planning. |
format | Online Article Text |
id | pubmed-8790504 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-87905042022-02-01 Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging Lappas, Georgios Staut, Nick Lieuwes, Natasja G. Biemans, Rianne Wolfs, Cecile J.A. van Hoof, Stefan J. Dubois, Ludwig J. Verhaegen, Frank Phys Imaging Radiat Oncol Original Research Article BACKGROUND AND PURPOSE: In preclinical radiation studies, there is great interest in quantifying the radiation response of healthy tissues. Manual contouring has significant impact on the treatment-planning because of variation introduced by human interpretation. This results in inconsistencies when assessing normal tissue volumes. Evaluation of these discrepancies can provide a better understanding on the limitations of the current preclinical radiation workflow. In the present work, interobserver variability (IOV) in manual contouring of rodent normal tissues on cone-beam Computed Tomography, in head and thorax regions was evaluated. MATERIALS AND METHODS: Two animal technicians performed manually (assisted) contouring of normal tissues located within the thorax and head regions of rodents, 20 cases per body site. Mean surface distance (MSD), displacement of center of mass (ΔCoM), DICE similarity coefficient (DSC) and the 95th percentile Hausdorff distance (HD(95)) were calculated between the contours of the two observers to evaluate the IOV. RESULTS: For the thorax organs, right lung had the lowest IOV (ΔCoM: 0.08 ± 0.04 mm, DSC: 0.96 ± 0.01, MSD:0.07 ± 0.01 mm, HD(95):0.20 ± 0.03 mm) while spinal cord, the highest IOV (ΔCoM:0.5 ± 0.3 mm, DSC:0.81 ± 0.05, MSD:0.14 ± 0.03 mm, HD(95):0.8 ± 0.2 mm). Regarding head organs, right eye demonstrated the lowest IOV (ΔCoM:0.12 ± 0.08 mm, DSC: 0.93 ± 0.02, MSD: 0.15 ± 0.04 mm, HD(95): 0.29 ± 0.07 mm) while complete brain, the highest IOV (ΔCoM: 0.2 ± 0.1 mm, DSC: 0.94 ± 0.02, MSD: 0.3 ± 0.1 mm, HD(95): 0.5 ± 0.1 mm). CONCLUSIONS: Our findings reveal small IOV, within the sub-mm range, for thorax and head normal tissues in rodents. The set of contours can serve as a basis for developing an automated delineation method for e.g., treatment planning. Elsevier 2022-01-24 /pmc/articles/PMC8790504/ /pubmed/35111981 http://dx.doi.org/10.1016/j.phro.2022.01.002 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Article Lappas, Georgios Staut, Nick Lieuwes, Natasja G. Biemans, Rianne Wolfs, Cecile J.A. van Hoof, Stefan J. Dubois, Ludwig J. Verhaegen, Frank Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging |
title | Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging |
title_full | Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging |
title_fullStr | Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging |
title_full_unstemmed | Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging |
title_short | Inter-observer variability of organ contouring for preclinical studies with cone beam Computed Tomography imaging |
title_sort | inter-observer variability of organ contouring for preclinical studies with cone beam computed tomography imaging |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790504/ https://www.ncbi.nlm.nih.gov/pubmed/35111981 http://dx.doi.org/10.1016/j.phro.2022.01.002 |
work_keys_str_mv | AT lappasgeorgios interobservervariabilityoforgancontouringforpreclinicalstudieswithconebeamcomputedtomographyimaging AT stautnick interobservervariabilityoforgancontouringforpreclinicalstudieswithconebeamcomputedtomographyimaging AT lieuwesnatasjag interobservervariabilityoforgancontouringforpreclinicalstudieswithconebeamcomputedtomographyimaging AT biemansrianne interobservervariabilityoforgancontouringforpreclinicalstudieswithconebeamcomputedtomographyimaging AT wolfscecileja interobservervariabilityoforgancontouringforpreclinicalstudieswithconebeamcomputedtomographyimaging AT vanhoofstefanj interobservervariabilityoforgancontouringforpreclinicalstudieswithconebeamcomputedtomographyimaging AT duboisludwigj interobservervariabilityoforgancontouringforpreclinicalstudieswithconebeamcomputedtomographyimaging AT verhaegenfrank interobservervariabilityoforgancontouringforpreclinicalstudieswithconebeamcomputedtomographyimaging |