Cargando…
Co-sparse Non-negative Matrix Factorization
Non-negative matrix factorization, which decomposes the input non-negative matrix into product of two non-negative matrices, has been widely used in the neuroimaging field due to its flexible interpretability with non-negativity property. Nowadays, especially in the neuroimaging field, it is common...
Autores principales: | Wu, Fan, Cai, Jiahui, Wen, Canhong, Tan, Haizhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790575/ https://www.ncbi.nlm.nih.gov/pubmed/35095402 http://dx.doi.org/10.3389/fnins.2021.804554 |
Ejemplares similares
-
Rare Variant Analysis and Molecular Dynamics Simulation in Alzheimer’s Disease Identifies Exonic Variants in FLG
por: Xiong, Weixue, et al.
Publicado: (2022) -
Non-Negative Matrix Factorization Based on Smoothing and Sparse Constraints for Hyperspectral Unmixing
por: Jia, Xiangxiang, et al.
Publicado: (2022) -
Feature Extraction Using Sparse Kernel Non-Negative Matrix Factorization for Rolling Element Bearing Diagnosis
por: Liang, Lin, et al.
Publicado: (2021) -
A Novel Signal Separation Method Based on Improved Sparse Non-Negative Matrix Factorization
por: Wang, Huaqing, et al.
Publicado: (2019) -
Auto-Selection of an Optimal Sparse Matrix Format in the Neuro-Simulator ANNarchy
por: Dinkelbach, Helge Ülo, et al.
Publicado: (2022)