Cargando…
Detection and Weak Segmentation of Masses in Gray-Scale Breast Mammogram Images Using Deep Learning
PURPOSE: In this paper, we propose deep-learning methodology with which to enhance the mass differentiation performance of convolutional neural network (CNN)-based architecture. MATERIALS AND METHODS: We differentiated breast mass lesions from gray-scale X-ray mammography images based on regions of...
Autores principales: | Kim, Young Jae, Kim, Kwang Gi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Yonsei University College of Medicine
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790585/ https://www.ncbi.nlm.nih.gov/pubmed/35040607 http://dx.doi.org/10.3349/ymj.2022.63.S63 |
Ejemplares similares
-
Impact of image compression on deep learning-based mammogram classification
por: Jo, Yong-Yeon, et al.
Publicado: (2021) -
Web-Based Spine Segmentation Using Deep Learning in Computed Tomography Images
por: Kim, Young Jae, et al.
Publicado: (2020) -
Segmentation of Breast Masses in Mammogram Image Using Multilevel Multiobjective Electromagnetism-Like Optimization Algorithm
por: Ittannavar, S. S., et al.
Publicado: (2022) -
Exploiting Patch Sizes and Resolutions for Multi-Scale Deep Learning in Mammogram Image Classification
por: Quintana, Gonzalo Iñaki, et al.
Publicado: (2023) -
Detecting and classifying lesions in mammograms with Deep Learning
por: Ribli, Dezső, et al.
Publicado: (2018)