Cargando…
Deep learning program to predict protein functions based on sequence information
Deep learning technologies have been adopted to predict the functions of newly identified proteins in silico. However, most current models are not suitable for poorly characterized proteins because they require diverse information on target proteins. We designed a binary classification deep learning...
Autores principales: | Ko, Chang Woo, Huh, June, Park, Jong-Wan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790617/ https://www.ncbi.nlm.nih.gov/pubmed/35111575 http://dx.doi.org/10.1016/j.mex.2022.101622 |
Ejemplares similares
-
High-throughput deep learning variant effect prediction with Sequence UNET
por: Dunham, Alistair S., et al.
Publicado: (2023) -
DeepMILO: a deep learning approach to predict the impact of non-coding sequence variants on 3D chromatin structure
por: Trieu, Tuan, et al.
Publicado: (2020) -
SPOT-Disorder2: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning
por: Hanson, Jack, et al.
Publicado: (2019) -
Predicting the Landscape of Recombination Using Deep Learning
por: Adrion, Jeffrey R, et al.
Publicado: (2020) -
Detecting sequence signals in targeting peptides using deep learning
por: Almagro Armenteros, Jose Juan, et al.
Publicado: (2019)