Cargando…
PlayMolecule Glimpse: Understanding Protein–Ligand Property Predictions with Interpretable Neural Networks
[Image: see text] Deep learning has been successfully applied to structure-based protein–ligand affinity prediction, yet the black box nature of these models raises some questions. In a previous study, we presented K(DEEP), a convolutional neural network that predicted the binding affinity of a give...
Autores principales: | Varela-Rial, Alejandro, Maryanow, Iain, Majewski, Maciej, Doerr, Stefan, Schapin, Nikolai, Jiménez-Luna, José, De Fabritiis, Gianni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790755/ https://www.ncbi.nlm.nih.gov/pubmed/34978201 http://dx.doi.org/10.1021/acs.jcim.1c00691 |
Ejemplares similares
-
TorchMD: A Deep Learning Framework for Molecular Simulations
por: Doerr, Stefan, et al.
Publicado: (2021) -
DeltaDelta neural networks for lead optimization of small molecule potency
por: Jiménez-Luna, José, et al.
Publicado: (2019) -
Glimpses of superhistory
Publicado: (2001) -
Machine learning coarse-grained potentials of protein thermodynamics
por: Majewski, Maciej, et al.
Publicado: (2023) -
Glimpses of algebra and geometry
por: Toth, Gabor
Publicado: (2002)