Cargando…
Multi-fidelity prediction of molecular optical peaks with deep learning
Optical properties are central to molecular design for many applications, including solar cells and biomedical imaging. A variety of ab initio and statistical methods have been developed for their prediction, each with a trade-off between accuracy, generality, and cost. Existing theoretical methods...
Autores principales: | Greenman, Kevin P., Green, William H., Gómez-Bombarelli, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790778/ https://www.ncbi.nlm.nih.gov/pubmed/35211282 http://dx.doi.org/10.1039/d1sc05677h |
Ejemplares similares
-
Editorial: Driving Innovation in Organic Optoelectronic Materials With Physics-Based and Machine-Learning De Novo Methods
por: Winget, Paul, et al.
Publicado: (2022) -
GEOM, energy-annotated molecular conformations for property prediction and molecular generation
por: Axelrod, Simon, et al.
Publicado: (2022) -
Deep Learning for Prediction and Optimization of Fast-Flow
Peptide Synthesis
por: Mohapatra, Somesh, et al.
Publicado: (2020) -
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Lu, Chi-Ken, et al.
Publicado: (2021) -
Effect of Framework Composition and NH(3) on the Diffusion
of Cu(+) in Cu-CHA Catalysts Predicted
by Machine-Learning Accelerated Molecular Dynamics
por: Millan, Reisel, et al.
Publicado: (2023)