Cargando…
Protein–RNA interaction prediction with deep learning: structure matters
Protein–RNA interactions are of vital importance to a variety of cellular activities. Both experimental and computational techniques have been developed to study the interactions. Because of the limitation of the previous database, especially the lack of protein structure data, most of the existing...
Autores principales: | Wei, Junkang, Chen, Siyuan, Zong, Licheng, Gao, Xin, Li, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790951/ https://www.ncbi.nlm.nih.gov/pubmed/34929730 http://dx.doi.org/10.1093/bib/bbab540 |
Ejemplares similares
-
AcrNET: predicting anti-CRISPR with deep learning
por: Li, Yunxiang, et al.
Publicado: (2023) -
Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures
por: Sun, Lei, et al.
Publicado: (2021) -
Deep learning frameworks for protein–protein interaction prediction
por: Hu, Xiaotian, et al.
Publicado: (2022) -
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
por: Han, Wenkai, et al.
Publicado: (2022) -
Deep Learning Deciphers Protein–RNA Interaction
por: Li, Ming
Publicado: (2019)