Cargando…

Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations

Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zhi Ming, Rüeger, Sina, Zwyer, Michaela, Brites, Daniela, Hiza, Hellen, Reinhard, Miriam, Rutaihwa, Liliana, Borrell, Sonia, Isihaka, Faima, Temba, Hosiana, Maroa, Thomas, Naftari, Rastard, Hella, Jerry, Sasamalo, Mohamed, Reither, Klaus, Portevin, Damien, Gagneux, Sebastien, Fellay, Jacques
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791479/
https://www.ncbi.nlm.nih.gov/pubmed/35025869
http://dx.doi.org/10.1371/journal.pcbi.1009628
_version_ 1784640191872368640
author Xu, Zhi Ming
Rüeger, Sina
Zwyer, Michaela
Brites, Daniela
Hiza, Hellen
Reinhard, Miriam
Rutaihwa, Liliana
Borrell, Sonia
Isihaka, Faima
Temba, Hosiana
Maroa, Thomas
Naftari, Rastard
Hella, Jerry
Sasamalo, Mohamed
Reither, Klaus
Portevin, Damien
Gagneux, Sebastien
Fellay, Jacques
author_facet Xu, Zhi Ming
Rüeger, Sina
Zwyer, Michaela
Brites, Daniela
Hiza, Hellen
Reinhard, Miriam
Rutaihwa, Liliana
Borrell, Sonia
Isihaka, Faima
Temba, Hosiana
Maroa, Thomas
Naftari, Rastard
Hella, Jerry
Sasamalo, Mohamed
Reither, Klaus
Portevin, Damien
Gagneux, Sebastien
Fellay, Jacques
author_sort Xu, Zhi Ming
collection PubMed
description Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to capture population-specific haplotype structures, hence the full extent of common genetic variation. Here, we propose to sequence the full genomes of a small subset of an underrepresented study cohort to inform the selection of population-specific add-on tag SNPs and to generate an internal population-specific imputation reference panel, such that the remaining array-genotyped cohort could be more accurately imputed. Using a Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach by showing improvements in imputation accuracy after the addition of our designed add-on tags to the base H3Africa array.
format Online
Article
Text
id pubmed-8791479
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-87914792022-01-27 Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations Xu, Zhi Ming Rüeger, Sina Zwyer, Michaela Brites, Daniela Hiza, Hellen Reinhard, Miriam Rutaihwa, Liliana Borrell, Sonia Isihaka, Faima Temba, Hosiana Maroa, Thomas Naftari, Rastard Hella, Jerry Sasamalo, Mohamed Reither, Klaus Portevin, Damien Gagneux, Sebastien Fellay, Jacques PLoS Comput Biol Research Article Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to capture population-specific haplotype structures, hence the full extent of common genetic variation. Here, we propose to sequence the full genomes of a small subset of an underrepresented study cohort to inform the selection of population-specific add-on tag SNPs and to generate an internal population-specific imputation reference panel, such that the remaining array-genotyped cohort could be more accurately imputed. Using a Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach by showing improvements in imputation accuracy after the addition of our designed add-on tags to the base H3Africa array. Public Library of Science 2022-01-13 /pmc/articles/PMC8791479/ /pubmed/35025869 http://dx.doi.org/10.1371/journal.pcbi.1009628 Text en © 2022 Xu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Xu, Zhi Ming
Rüeger, Sina
Zwyer, Michaela
Brites, Daniela
Hiza, Hellen
Reinhard, Miriam
Rutaihwa, Liliana
Borrell, Sonia
Isihaka, Faima
Temba, Hosiana
Maroa, Thomas
Naftari, Rastard
Hella, Jerry
Sasamalo, Mohamed
Reither, Klaus
Portevin, Damien
Gagneux, Sebastien
Fellay, Jacques
Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations
title Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations
title_full Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations
title_fullStr Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations
title_full_unstemmed Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations
title_short Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations
title_sort using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791479/
https://www.ncbi.nlm.nih.gov/pubmed/35025869
http://dx.doi.org/10.1371/journal.pcbi.1009628
work_keys_str_mv AT xuzhiming usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT ruegersina usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT zwyermichaela usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT britesdaniela usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT hizahellen usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT reinhardmiriam usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT rutaihwaliliana usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT borrellsonia usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT isihakafaima usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT tembahosiana usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT maroathomas usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT naftarirastard usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT hellajerry usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT sasamalomohamed usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT reitherklaus usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT portevindamien usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT gagneuxsebastien usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations
AT fellayjacques usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations