Cargando…
Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations
Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791479/ https://www.ncbi.nlm.nih.gov/pubmed/35025869 http://dx.doi.org/10.1371/journal.pcbi.1009628 |
_version_ | 1784640191872368640 |
---|---|
author | Xu, Zhi Ming Rüeger, Sina Zwyer, Michaela Brites, Daniela Hiza, Hellen Reinhard, Miriam Rutaihwa, Liliana Borrell, Sonia Isihaka, Faima Temba, Hosiana Maroa, Thomas Naftari, Rastard Hella, Jerry Sasamalo, Mohamed Reither, Klaus Portevin, Damien Gagneux, Sebastien Fellay, Jacques |
author_facet | Xu, Zhi Ming Rüeger, Sina Zwyer, Michaela Brites, Daniela Hiza, Hellen Reinhard, Miriam Rutaihwa, Liliana Borrell, Sonia Isihaka, Faima Temba, Hosiana Maroa, Thomas Naftari, Rastard Hella, Jerry Sasamalo, Mohamed Reither, Klaus Portevin, Damien Gagneux, Sebastien Fellay, Jacques |
author_sort | Xu, Zhi Ming |
collection | PubMed |
description | Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to capture population-specific haplotype structures, hence the full extent of common genetic variation. Here, we propose to sequence the full genomes of a small subset of an underrepresented study cohort to inform the selection of population-specific add-on tag SNPs and to generate an internal population-specific imputation reference panel, such that the remaining array-genotyped cohort could be more accurately imputed. Using a Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach by showing improvements in imputation accuracy after the addition of our designed add-on tags to the base H3Africa array. |
format | Online Article Text |
id | pubmed-8791479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-87914792022-01-27 Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations Xu, Zhi Ming Rüeger, Sina Zwyer, Michaela Brites, Daniela Hiza, Hellen Reinhard, Miriam Rutaihwa, Liliana Borrell, Sonia Isihaka, Faima Temba, Hosiana Maroa, Thomas Naftari, Rastard Hella, Jerry Sasamalo, Mohamed Reither, Klaus Portevin, Damien Gagneux, Sebastien Fellay, Jacques PLoS Comput Biol Research Article Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to capture population-specific haplotype structures, hence the full extent of common genetic variation. Here, we propose to sequence the full genomes of a small subset of an underrepresented study cohort to inform the selection of population-specific add-on tag SNPs and to generate an internal population-specific imputation reference panel, such that the remaining array-genotyped cohort could be more accurately imputed. Using a Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach by showing improvements in imputation accuracy after the addition of our designed add-on tags to the base H3Africa array. Public Library of Science 2022-01-13 /pmc/articles/PMC8791479/ /pubmed/35025869 http://dx.doi.org/10.1371/journal.pcbi.1009628 Text en © 2022 Xu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Xu, Zhi Ming Rüeger, Sina Zwyer, Michaela Brites, Daniela Hiza, Hellen Reinhard, Miriam Rutaihwa, Liliana Borrell, Sonia Isihaka, Faima Temba, Hosiana Maroa, Thomas Naftari, Rastard Hella, Jerry Sasamalo, Mohamed Reither, Klaus Portevin, Damien Gagneux, Sebastien Fellay, Jacques Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations |
title | Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations |
title_full | Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations |
title_fullStr | Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations |
title_full_unstemmed | Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations |
title_short | Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations |
title_sort | using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791479/ https://www.ncbi.nlm.nih.gov/pubmed/35025869 http://dx.doi.org/10.1371/journal.pcbi.1009628 |
work_keys_str_mv | AT xuzhiming usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT ruegersina usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT zwyermichaela usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT britesdaniela usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT hizahellen usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT reinhardmiriam usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT rutaihwaliliana usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT borrellsonia usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT isihakafaima usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT tembahosiana usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT maroathomas usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT naftarirastard usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT hellajerry usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT sasamalomohamed usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT reitherklaus usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT portevindamien usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT gagneuxsebastien usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations AT fellayjacques usingpopulationspecificaddonpolymorphismstoimprovegenotypeimputationinunderrepresentedpopulations |