Cargando…
Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review
BACKGROUND: Neglected tropical diseases (NTDs) primarily affect the poorest populations, often living in remote, rural areas, urban slums or conflict zones. Arboviruses are a significant NTD category spread by mosquitoes. Dengue, Chikungunya, and Zika are three arboviruses that affect a large propor...
Autores principales: | da Silva Neto, Sebastião Rogério, Tabosa Oliveira, Thomás, Teixeira, Igor Vitor, Aguiar de Oliveira, Samuel Benjamin, Souza Sampaio, Vanderson, Lynn, Theo, Endo, Patricia Takako |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791518/ https://www.ncbi.nlm.nih.gov/pubmed/35025860 http://dx.doi.org/10.1371/journal.pntd.0010061 |
Ejemplares similares
-
Arboviral disease record data - Dengue and Chikungunya, Brazil, 2013–2020
por: da Silva Neto, Sebastião Rogério, et al.
Publicado: (2022) -
Author Correction: Arboviral disease record data - Dengue and Chikungunya, Brazil, 2013–2020
por: da Silva Neto, Sebastião Rogério, et al.
Publicado: (2022) -
Prediction of malaria using deep learning models: A case study on city clusters in the state of Amazonas, Brazil, from 2003 to 2018
por: Barboza, Matheus Félix Xavier, et al.
Publicado: (2022) -
Improved machine learning performances with transfer learning to predicting need for hospitalization in arboviral infections against the small dataset
por: Ozer, Ilyas, et al.
Publicado: (2021) -
Impact of environmental factors on neglected emerging arboviral diseases
por: Lorenz, Camila, et al.
Publicado: (2017)