Cargando…
Deep learning approaches for detecting DDoS attacks: a systematic review
In today’s world, technology has become an inevitable part of human life. In fact, during the Covid-19 pandemic, everything from the corporate world to educational institutes has shifted from offline to online. It leads to exponential increase in intrusions and attacks over the Internet-based techno...
Autores principales: | Mittal, Meenakshi, Kumar, Krishan, Behal, Sunny |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791701/ https://www.ncbi.nlm.nih.gov/pubmed/35103047 http://dx.doi.org/10.1007/s00500-021-06608-1 |
Ejemplares similares
-
KS-DDoS: Kafka streams-based classification approach for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
DDoS attacks: evolution, detection, prevention, reaction, and tolerance
por: Bhattacharyya, Dhruba Kumar, et al.
Publicado: (2016) -
A hybrid machine learning approach for detecting unprecedented DDoS attacks
por: Najafimehr, Mohammad, et al.
Publicado: (2022) -
DDoS attacks hit hard and fast
Publicado: (2020)