Cargando…
Multi-omic machine learning predictor of breast cancer therapy response
Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment(1). The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy(2). Efforts to build response predictors have not incorporated this knowledge. We collecte...
Autores principales: | Sammut, Stephen-John, Crispin-Ortuzar, Mireia, Chin, Suet-Feung, Provenzano, Elena, Bardwell, Helen A., Ma, Wenxin, Cope, Wei, Dariush, Ali, Dawson, Sarah-Jane, Abraham, Jean E., Dunn, Janet, Hiller, Louise, Thomas, Jeremy, Cameron, David A., Bartlett, John M. S., Hayward, Larry, Pharoah, Paul D., Markowetz, Florian, Rueda, Oscar M., Earl, Helena M., Caldas, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791834/ https://www.ncbi.nlm.nih.gov/pubmed/34875674 http://dx.doi.org/10.1038/s41586-021-04278-5 |
Ejemplares similares
-
Shallow whole genome sequencing for robust copy number profiling of formalin-fixed paraffin-embedded breast cancers
por: Chin, Suet-Feung, et al.
Publicado: (2018) -
Intersect-then-combine approach: improving the performance of somatic variant calling in whole exome sequencing data using multiple aligners and callers
por: Callari, Maurizio, et al.
Publicado: (2017) -
Breast tumor microenvironment structures are associated with genomic features and clinical outcome
por: Danenberg, Esther, et al.
Publicado: (2022) -
Lymphocyte density determined by computational pathology validated as a predictor of response to neoadjuvant chemotherapy in breast cancer: secondary analysis of the ARTemis trial
por: Ali, H. R., et al.
Publicado: (2017) -
Computational approach to discriminate human and mouse sequences in patient-derived tumour xenografts
por: Callari, Maurizio, et al.
Publicado: (2018)