Cargando…

Time-crystalline eigenstate order on a quantum processor

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states(1). However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases(2–8) that may otherwise be forbidden...

Descripción completa

Detalles Bibliográficos
Autores principales: Mi, Xiao, Ippoliti, Matteo, Quintana, Chris, Greene, Ami, Chen, Zijun, Gross, Jonathan, Arute, Frank, Arya, Kunal, Atalaya, Juan, Babbush, Ryan, Bardin, Joseph C., Basso, Joao, Bengtsson, Andreas, Bilmes, Alexander, Bourassa, Alexandre, Brill, Leon, Broughton, Michael, Buckley, Bob B., Buell, David A., Burkett, Brian, Bushnell, Nicholas, Chiaro, Benjamin, Collins, Roberto, Courtney, William, Debroy, Dripto, Demura, Sean, Derk, Alan R., Dunsworth, Andrew, Eppens, Daniel, Erickson, Catherine, Farhi, Edward, Fowler, Austin G., Foxen, Brooks, Gidney, Craig, Giustina, Marissa, Harrigan, Matthew P., Harrington, Sean D., Hilton, Jeremy, Ho, Alan, Hong, Sabrina, Huang, Trent, Huff, Ashley, Huggins, William J., Ioffe, L. B., Isakov, Sergei V., Iveland, Justin, Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kafri, Dvir, Khattar, Tanuj, Kim, Seon, Kitaev, Alexei, Klimov, Paul V., Korotkov, Alexander N., Kostritsa, Fedor, Landhuis, David, Laptev, Pavel, Lee, Joonho, Lee, Kenny, Locharla, Aditya, Lucero, Erik, Martin, Orion, McClean, Jarrod R., McCourt, Trevor, McEwen, Matt, Miao, Kevin C., Mohseni, Masoud, Montazeri, Shirin, Mruczkiewicz, Wojciech, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Newman, Michael, Niu, Murphy Yuezhen, O’Brien, Thomas E., Opremcak, Alex, Ostby, Eric, Pato, Balint, Petukhov, Andre, Rubin, Nicholas C., Sank, Daniel, Satzinger, Kevin J., Shvarts, Vladimir, Su, Yuan, Strain, Doug, Szalay, Marco, Trevithick, Matthew D., Villalonga, Benjamin, White, Theodore, Yao, Z. Jamie, Yeh, Ping, Yoo, Juhwan, Zalcman, Adam, Neven, Hartmut, Boixo, Sergio, Smelyanskiy, Vadim, Megrant, Anthony, Kelly, Julian, Chen, Yu, Sondhi, S. L., Moessner, Roderich, Kechedzhi, Kostyantyn, Khemani, Vedika, Roushan, Pedram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791837/
https://www.ncbi.nlm.nih.gov/pubmed/34847568
http://dx.doi.org/10.1038/s41586-021-04257-w
Descripción
Sumario:Quantum many-body systems display rich phase structure in their low-temperature equilibrium states(1). However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases(2–8) that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)(7,9–15). Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order(7,16,17). In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states(7,9,10). Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.