Cargando…

Time-crystalline eigenstate order on a quantum processor

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states(1). However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases(2–8) that may otherwise be forbidden...

Descripción completa

Detalles Bibliográficos
Autores principales: Mi, Xiao, Ippoliti, Matteo, Quintana, Chris, Greene, Ami, Chen, Zijun, Gross, Jonathan, Arute, Frank, Arya, Kunal, Atalaya, Juan, Babbush, Ryan, Bardin, Joseph C., Basso, Joao, Bengtsson, Andreas, Bilmes, Alexander, Bourassa, Alexandre, Brill, Leon, Broughton, Michael, Buckley, Bob B., Buell, David A., Burkett, Brian, Bushnell, Nicholas, Chiaro, Benjamin, Collins, Roberto, Courtney, William, Debroy, Dripto, Demura, Sean, Derk, Alan R., Dunsworth, Andrew, Eppens, Daniel, Erickson, Catherine, Farhi, Edward, Fowler, Austin G., Foxen, Brooks, Gidney, Craig, Giustina, Marissa, Harrigan, Matthew P., Harrington, Sean D., Hilton, Jeremy, Ho, Alan, Hong, Sabrina, Huang, Trent, Huff, Ashley, Huggins, William J., Ioffe, L. B., Isakov, Sergei V., Iveland, Justin, Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Kafri, Dvir, Khattar, Tanuj, Kim, Seon, Kitaev, Alexei, Klimov, Paul V., Korotkov, Alexander N., Kostritsa, Fedor, Landhuis, David, Laptev, Pavel, Lee, Joonho, Lee, Kenny, Locharla, Aditya, Lucero, Erik, Martin, Orion, McClean, Jarrod R., McCourt, Trevor, McEwen, Matt, Miao, Kevin C., Mohseni, Masoud, Montazeri, Shirin, Mruczkiewicz, Wojciech, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Newman, Michael, Niu, Murphy Yuezhen, O’Brien, Thomas E., Opremcak, Alex, Ostby, Eric, Pato, Balint, Petukhov, Andre, Rubin, Nicholas C., Sank, Daniel, Satzinger, Kevin J., Shvarts, Vladimir, Su, Yuan, Strain, Doug, Szalay, Marco, Trevithick, Matthew D., Villalonga, Benjamin, White, Theodore, Yao, Z. Jamie, Yeh, Ping, Yoo, Juhwan, Zalcman, Adam, Neven, Hartmut, Boixo, Sergio, Smelyanskiy, Vadim, Megrant, Anthony, Kelly, Julian, Chen, Yu, Sondhi, S. L., Moessner, Roderich, Kechedzhi, Kostyantyn, Khemani, Vedika, Roushan, Pedram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791837/
https://www.ncbi.nlm.nih.gov/pubmed/34847568
http://dx.doi.org/10.1038/s41586-021-04257-w
_version_ 1784640272500523008
author Mi, Xiao
Ippoliti, Matteo
Quintana, Chris
Greene, Ami
Chen, Zijun
Gross, Jonathan
Arute, Frank
Arya, Kunal
Atalaya, Juan
Babbush, Ryan
Bardin, Joseph C.
Basso, Joao
Bengtsson, Andreas
Bilmes, Alexander
Bourassa, Alexandre
Brill, Leon
Broughton, Michael
Buckley, Bob B.
Buell, David A.
Burkett, Brian
Bushnell, Nicholas
Chiaro, Benjamin
Collins, Roberto
Courtney, William
Debroy, Dripto
Demura, Sean
Derk, Alan R.
Dunsworth, Andrew
Eppens, Daniel
Erickson, Catherine
Farhi, Edward
Fowler, Austin G.
Foxen, Brooks
Gidney, Craig
Giustina, Marissa
Harrigan, Matthew P.
Harrington, Sean D.
Hilton, Jeremy
Ho, Alan
Hong, Sabrina
Huang, Trent
Huff, Ashley
Huggins, William J.
Ioffe, L. B.
Isakov, Sergei V.
Iveland, Justin
Jeffrey, Evan
Jiang, Zhang
Jones, Cody
Kafri, Dvir
Khattar, Tanuj
Kim, Seon
Kitaev, Alexei
Klimov, Paul V.
Korotkov, Alexander N.
Kostritsa, Fedor
Landhuis, David
Laptev, Pavel
Lee, Joonho
Lee, Kenny
Locharla, Aditya
Lucero, Erik
Martin, Orion
McClean, Jarrod R.
McCourt, Trevor
McEwen, Matt
Miao, Kevin C.
Mohseni, Masoud
Montazeri, Shirin
Mruczkiewicz, Wojciech
Naaman, Ofer
Neeley, Matthew
Neill, Charles
Newman, Michael
Niu, Murphy Yuezhen
O’Brien, Thomas E.
Opremcak, Alex
Ostby, Eric
Pato, Balint
Petukhov, Andre
Rubin, Nicholas C.
Sank, Daniel
Satzinger, Kevin J.
Shvarts, Vladimir
Su, Yuan
Strain, Doug
Szalay, Marco
Trevithick, Matthew D.
Villalonga, Benjamin
White, Theodore
Yao, Z. Jamie
Yeh, Ping
Yoo, Juhwan
Zalcman, Adam
Neven, Hartmut
Boixo, Sergio
Smelyanskiy, Vadim
Megrant, Anthony
Kelly, Julian
Chen, Yu
Sondhi, S. L.
Moessner, Roderich
Kechedzhi, Kostyantyn
Khemani, Vedika
Roushan, Pedram
author_facet Mi, Xiao
Ippoliti, Matteo
Quintana, Chris
Greene, Ami
Chen, Zijun
Gross, Jonathan
Arute, Frank
Arya, Kunal
Atalaya, Juan
Babbush, Ryan
Bardin, Joseph C.
Basso, Joao
Bengtsson, Andreas
Bilmes, Alexander
Bourassa, Alexandre
Brill, Leon
Broughton, Michael
Buckley, Bob B.
Buell, David A.
Burkett, Brian
Bushnell, Nicholas
Chiaro, Benjamin
Collins, Roberto
Courtney, William
Debroy, Dripto
Demura, Sean
Derk, Alan R.
Dunsworth, Andrew
Eppens, Daniel
Erickson, Catherine
Farhi, Edward
Fowler, Austin G.
Foxen, Brooks
Gidney, Craig
Giustina, Marissa
Harrigan, Matthew P.
Harrington, Sean D.
Hilton, Jeremy
Ho, Alan
Hong, Sabrina
Huang, Trent
Huff, Ashley
Huggins, William J.
Ioffe, L. B.
Isakov, Sergei V.
Iveland, Justin
Jeffrey, Evan
Jiang, Zhang
Jones, Cody
Kafri, Dvir
Khattar, Tanuj
Kim, Seon
Kitaev, Alexei
Klimov, Paul V.
Korotkov, Alexander N.
Kostritsa, Fedor
Landhuis, David
Laptev, Pavel
Lee, Joonho
Lee, Kenny
Locharla, Aditya
Lucero, Erik
Martin, Orion
McClean, Jarrod R.
McCourt, Trevor
McEwen, Matt
Miao, Kevin C.
Mohseni, Masoud
Montazeri, Shirin
Mruczkiewicz, Wojciech
Naaman, Ofer
Neeley, Matthew
Neill, Charles
Newman, Michael
Niu, Murphy Yuezhen
O’Brien, Thomas E.
Opremcak, Alex
Ostby, Eric
Pato, Balint
Petukhov, Andre
Rubin, Nicholas C.
Sank, Daniel
Satzinger, Kevin J.
Shvarts, Vladimir
Su, Yuan
Strain, Doug
Szalay, Marco
Trevithick, Matthew D.
Villalonga, Benjamin
White, Theodore
Yao, Z. Jamie
Yeh, Ping
Yoo, Juhwan
Zalcman, Adam
Neven, Hartmut
Boixo, Sergio
Smelyanskiy, Vadim
Megrant, Anthony
Kelly, Julian
Chen, Yu
Sondhi, S. L.
Moessner, Roderich
Kechedzhi, Kostyantyn
Khemani, Vedika
Roushan, Pedram
author_sort Mi, Xiao
collection PubMed
description Quantum many-body systems display rich phase structure in their low-temperature equilibrium states(1). However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases(2–8) that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)(7,9–15). Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order(7,16,17). In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states(7,9,10). Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.
format Online
Article
Text
id pubmed-8791837
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-87918372022-02-07 Time-crystalline eigenstate order on a quantum processor Mi, Xiao Ippoliti, Matteo Quintana, Chris Greene, Ami Chen, Zijun Gross, Jonathan Arute, Frank Arya, Kunal Atalaya, Juan Babbush, Ryan Bardin, Joseph C. Basso, Joao Bengtsson, Andreas Bilmes, Alexander Bourassa, Alexandre Brill, Leon Broughton, Michael Buckley, Bob B. Buell, David A. Burkett, Brian Bushnell, Nicholas Chiaro, Benjamin Collins, Roberto Courtney, William Debroy, Dripto Demura, Sean Derk, Alan R. Dunsworth, Andrew Eppens, Daniel Erickson, Catherine Farhi, Edward Fowler, Austin G. Foxen, Brooks Gidney, Craig Giustina, Marissa Harrigan, Matthew P. Harrington, Sean D. Hilton, Jeremy Ho, Alan Hong, Sabrina Huang, Trent Huff, Ashley Huggins, William J. Ioffe, L. B. Isakov, Sergei V. Iveland, Justin Jeffrey, Evan Jiang, Zhang Jones, Cody Kafri, Dvir Khattar, Tanuj Kim, Seon Kitaev, Alexei Klimov, Paul V. Korotkov, Alexander N. Kostritsa, Fedor Landhuis, David Laptev, Pavel Lee, Joonho Lee, Kenny Locharla, Aditya Lucero, Erik Martin, Orion McClean, Jarrod R. McCourt, Trevor McEwen, Matt Miao, Kevin C. Mohseni, Masoud Montazeri, Shirin Mruczkiewicz, Wojciech Naaman, Ofer Neeley, Matthew Neill, Charles Newman, Michael Niu, Murphy Yuezhen O’Brien, Thomas E. Opremcak, Alex Ostby, Eric Pato, Balint Petukhov, Andre Rubin, Nicholas C. Sank, Daniel Satzinger, Kevin J. Shvarts, Vladimir Su, Yuan Strain, Doug Szalay, Marco Trevithick, Matthew D. Villalonga, Benjamin White, Theodore Yao, Z. Jamie Yeh, Ping Yoo, Juhwan Zalcman, Adam Neven, Hartmut Boixo, Sergio Smelyanskiy, Vadim Megrant, Anthony Kelly, Julian Chen, Yu Sondhi, S. L. Moessner, Roderich Kechedzhi, Kostyantyn Khemani, Vedika Roushan, Pedram Nature Article Quantum many-body systems display rich phase structure in their low-temperature equilibrium states(1). However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases(2–8) that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)(7,9–15). Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order(7,16,17). In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states(7,9,10). Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors. Nature Publishing Group UK 2021-11-30 2022 /pmc/articles/PMC8791837/ /pubmed/34847568 http://dx.doi.org/10.1038/s41586-021-04257-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Mi, Xiao
Ippoliti, Matteo
Quintana, Chris
Greene, Ami
Chen, Zijun
Gross, Jonathan
Arute, Frank
Arya, Kunal
Atalaya, Juan
Babbush, Ryan
Bardin, Joseph C.
Basso, Joao
Bengtsson, Andreas
Bilmes, Alexander
Bourassa, Alexandre
Brill, Leon
Broughton, Michael
Buckley, Bob B.
Buell, David A.
Burkett, Brian
Bushnell, Nicholas
Chiaro, Benjamin
Collins, Roberto
Courtney, William
Debroy, Dripto
Demura, Sean
Derk, Alan R.
Dunsworth, Andrew
Eppens, Daniel
Erickson, Catherine
Farhi, Edward
Fowler, Austin G.
Foxen, Brooks
Gidney, Craig
Giustina, Marissa
Harrigan, Matthew P.
Harrington, Sean D.
Hilton, Jeremy
Ho, Alan
Hong, Sabrina
Huang, Trent
Huff, Ashley
Huggins, William J.
Ioffe, L. B.
Isakov, Sergei V.
Iveland, Justin
Jeffrey, Evan
Jiang, Zhang
Jones, Cody
Kafri, Dvir
Khattar, Tanuj
Kim, Seon
Kitaev, Alexei
Klimov, Paul V.
Korotkov, Alexander N.
Kostritsa, Fedor
Landhuis, David
Laptev, Pavel
Lee, Joonho
Lee, Kenny
Locharla, Aditya
Lucero, Erik
Martin, Orion
McClean, Jarrod R.
McCourt, Trevor
McEwen, Matt
Miao, Kevin C.
Mohseni, Masoud
Montazeri, Shirin
Mruczkiewicz, Wojciech
Naaman, Ofer
Neeley, Matthew
Neill, Charles
Newman, Michael
Niu, Murphy Yuezhen
O’Brien, Thomas E.
Opremcak, Alex
Ostby, Eric
Pato, Balint
Petukhov, Andre
Rubin, Nicholas C.
Sank, Daniel
Satzinger, Kevin J.
Shvarts, Vladimir
Su, Yuan
Strain, Doug
Szalay, Marco
Trevithick, Matthew D.
Villalonga, Benjamin
White, Theodore
Yao, Z. Jamie
Yeh, Ping
Yoo, Juhwan
Zalcman, Adam
Neven, Hartmut
Boixo, Sergio
Smelyanskiy, Vadim
Megrant, Anthony
Kelly, Julian
Chen, Yu
Sondhi, S. L.
Moessner, Roderich
Kechedzhi, Kostyantyn
Khemani, Vedika
Roushan, Pedram
Time-crystalline eigenstate order on a quantum processor
title Time-crystalline eigenstate order on a quantum processor
title_full Time-crystalline eigenstate order on a quantum processor
title_fullStr Time-crystalline eigenstate order on a quantum processor
title_full_unstemmed Time-crystalline eigenstate order on a quantum processor
title_short Time-crystalline eigenstate order on a quantum processor
title_sort time-crystalline eigenstate order on a quantum processor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791837/
https://www.ncbi.nlm.nih.gov/pubmed/34847568
http://dx.doi.org/10.1038/s41586-021-04257-w
work_keys_str_mv AT mixiao timecrystallineeigenstateorderonaquantumprocessor
AT ippolitimatteo timecrystallineeigenstateorderonaquantumprocessor
AT quintanachris timecrystallineeigenstateorderonaquantumprocessor
AT greeneami timecrystallineeigenstateorderonaquantumprocessor
AT chenzijun timecrystallineeigenstateorderonaquantumprocessor
AT grossjonathan timecrystallineeigenstateorderonaquantumprocessor
AT arutefrank timecrystallineeigenstateorderonaquantumprocessor
AT aryakunal timecrystallineeigenstateorderonaquantumprocessor
AT atalayajuan timecrystallineeigenstateorderonaquantumprocessor
AT babbushryan timecrystallineeigenstateorderonaquantumprocessor
AT bardinjosephc timecrystallineeigenstateorderonaquantumprocessor
AT bassojoao timecrystallineeigenstateorderonaquantumprocessor
AT bengtssonandreas timecrystallineeigenstateorderonaquantumprocessor
AT bilmesalexander timecrystallineeigenstateorderonaquantumprocessor
AT bourassaalexandre timecrystallineeigenstateorderonaquantumprocessor
AT brillleon timecrystallineeigenstateorderonaquantumprocessor
AT broughtonmichael timecrystallineeigenstateorderonaquantumprocessor
AT buckleybobb timecrystallineeigenstateorderonaquantumprocessor
AT buelldavida timecrystallineeigenstateorderonaquantumprocessor
AT burkettbrian timecrystallineeigenstateorderonaquantumprocessor
AT bushnellnicholas timecrystallineeigenstateorderonaquantumprocessor
AT chiarobenjamin timecrystallineeigenstateorderonaquantumprocessor
AT collinsroberto timecrystallineeigenstateorderonaquantumprocessor
AT courtneywilliam timecrystallineeigenstateorderonaquantumprocessor
AT debroydripto timecrystallineeigenstateorderonaquantumprocessor
AT demurasean timecrystallineeigenstateorderonaquantumprocessor
AT derkalanr timecrystallineeigenstateorderonaquantumprocessor
AT dunsworthandrew timecrystallineeigenstateorderonaquantumprocessor
AT eppensdaniel timecrystallineeigenstateorderonaquantumprocessor
AT ericksoncatherine timecrystallineeigenstateorderonaquantumprocessor
AT farhiedward timecrystallineeigenstateorderonaquantumprocessor
AT fowlerausting timecrystallineeigenstateorderonaquantumprocessor
AT foxenbrooks timecrystallineeigenstateorderonaquantumprocessor
AT gidneycraig timecrystallineeigenstateorderonaquantumprocessor
AT giustinamarissa timecrystallineeigenstateorderonaquantumprocessor
AT harriganmatthewp timecrystallineeigenstateorderonaquantumprocessor
AT harringtonseand timecrystallineeigenstateorderonaquantumprocessor
AT hiltonjeremy timecrystallineeigenstateorderonaquantumprocessor
AT hoalan timecrystallineeigenstateorderonaquantumprocessor
AT hongsabrina timecrystallineeigenstateorderonaquantumprocessor
AT huangtrent timecrystallineeigenstateorderonaquantumprocessor
AT huffashley timecrystallineeigenstateorderonaquantumprocessor
AT hugginswilliamj timecrystallineeigenstateorderonaquantumprocessor
AT ioffelb timecrystallineeigenstateorderonaquantumprocessor
AT isakovsergeiv timecrystallineeigenstateorderonaquantumprocessor
AT ivelandjustin timecrystallineeigenstateorderonaquantumprocessor
AT jeffreyevan timecrystallineeigenstateorderonaquantumprocessor
AT jiangzhang timecrystallineeigenstateorderonaquantumprocessor
AT jonescody timecrystallineeigenstateorderonaquantumprocessor
AT kafridvir timecrystallineeigenstateorderonaquantumprocessor
AT khattartanuj timecrystallineeigenstateorderonaquantumprocessor
AT kimseon timecrystallineeigenstateorderonaquantumprocessor
AT kitaevalexei timecrystallineeigenstateorderonaquantumprocessor
AT klimovpaulv timecrystallineeigenstateorderonaquantumprocessor
AT korotkovalexandern timecrystallineeigenstateorderonaquantumprocessor
AT kostritsafedor timecrystallineeigenstateorderonaquantumprocessor
AT landhuisdavid timecrystallineeigenstateorderonaquantumprocessor
AT laptevpavel timecrystallineeigenstateorderonaquantumprocessor
AT leejoonho timecrystallineeigenstateorderonaquantumprocessor
AT leekenny timecrystallineeigenstateorderonaquantumprocessor
AT locharlaaditya timecrystallineeigenstateorderonaquantumprocessor
AT luceroerik timecrystallineeigenstateorderonaquantumprocessor
AT martinorion timecrystallineeigenstateorderonaquantumprocessor
AT mccleanjarrodr timecrystallineeigenstateorderonaquantumprocessor
AT mccourttrevor timecrystallineeigenstateorderonaquantumprocessor
AT mcewenmatt timecrystallineeigenstateorderonaquantumprocessor
AT miaokevinc timecrystallineeigenstateorderonaquantumprocessor
AT mohsenimasoud timecrystallineeigenstateorderonaquantumprocessor
AT montazerishirin timecrystallineeigenstateorderonaquantumprocessor
AT mruczkiewiczwojciech timecrystallineeigenstateorderonaquantumprocessor
AT naamanofer timecrystallineeigenstateorderonaquantumprocessor
AT neeleymatthew timecrystallineeigenstateorderonaquantumprocessor
AT neillcharles timecrystallineeigenstateorderonaquantumprocessor
AT newmanmichael timecrystallineeigenstateorderonaquantumprocessor
AT niumurphyyuezhen timecrystallineeigenstateorderonaquantumprocessor
AT obrienthomase timecrystallineeigenstateorderonaquantumprocessor
AT opremcakalex timecrystallineeigenstateorderonaquantumprocessor
AT ostbyeric timecrystallineeigenstateorderonaquantumprocessor
AT patobalint timecrystallineeigenstateorderonaquantumprocessor
AT petukhovandre timecrystallineeigenstateorderonaquantumprocessor
AT rubinnicholasc timecrystallineeigenstateorderonaquantumprocessor
AT sankdaniel timecrystallineeigenstateorderonaquantumprocessor
AT satzingerkevinj timecrystallineeigenstateorderonaquantumprocessor
AT shvartsvladimir timecrystallineeigenstateorderonaquantumprocessor
AT suyuan timecrystallineeigenstateorderonaquantumprocessor
AT straindoug timecrystallineeigenstateorderonaquantumprocessor
AT szalaymarco timecrystallineeigenstateorderonaquantumprocessor
AT trevithickmatthewd timecrystallineeigenstateorderonaquantumprocessor
AT villalongabenjamin timecrystallineeigenstateorderonaquantumprocessor
AT whitetheodore timecrystallineeigenstateorderonaquantumprocessor
AT yaozjamie timecrystallineeigenstateorderonaquantumprocessor
AT yehping timecrystallineeigenstateorderonaquantumprocessor
AT yoojuhwan timecrystallineeigenstateorderonaquantumprocessor
AT zalcmanadam timecrystallineeigenstateorderonaquantumprocessor
AT nevenhartmut timecrystallineeigenstateorderonaquantumprocessor
AT boixosergio timecrystallineeigenstateorderonaquantumprocessor
AT smelyanskiyvadim timecrystallineeigenstateorderonaquantumprocessor
AT megrantanthony timecrystallineeigenstateorderonaquantumprocessor
AT kellyjulian timecrystallineeigenstateorderonaquantumprocessor
AT chenyu timecrystallineeigenstateorderonaquantumprocessor
AT sondhisl timecrystallineeigenstateorderonaquantumprocessor
AT moessnerroderich timecrystallineeigenstateorderonaquantumprocessor
AT kechedzhikostyantyn timecrystallineeigenstateorderonaquantumprocessor
AT khemanivedika timecrystallineeigenstateorderonaquantumprocessor
AT roushanpedram timecrystallineeigenstateorderonaquantumprocessor