Cargando…

Onset of criticality in hyper-auxetic polymer networks

Against common sense, auxetic materials expand or contract perpendicularly when stretched or compressed, respectively, by uniaxial strain, being characterized by a negative Poisson’s ratio ν. The amount of deformation in response to the applied force can be at most equal to the imposed one, so that...

Descripción completa

Detalles Bibliográficos
Autores principales: Ninarello, Andrea, Ruiz-Franco, José, Zaccarelli, Emanuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791937/
https://www.ncbi.nlm.nih.gov/pubmed/35082298
http://dx.doi.org/10.1038/s41467-022-28026-z
Descripción
Sumario:Against common sense, auxetic materials expand or contract perpendicularly when stretched or compressed, respectively, by uniaxial strain, being characterized by a negative Poisson’s ratio ν. The amount of deformation in response to the applied force can be at most equal to the imposed one, so that ν = − 1 is the lowest bound for the mechanical stability of solids, a condition here defined as “hyper-auxeticity”. In this work, we numerically show that ultra-low-crosslinked polymer networks under tension display hyper-auxetic behavior at a finite crosslinker concentration. At this point, the nearby mechanical instability triggers the onset of a critical-like transition between two states of different densities. This phenomenon displays similar features as well as important differences with respect to gas-liquid phase separation. Since our model is able to faithfully describe real-world hydrogels, the present results can be readily tested in laboratory experiments, paving the way to explore this unconventional phase behavior.