Cargando…
A loss-based patch label denoising method for improving whole-slide image analysis using a convolutional neural network
This paper proposes a deep learning-based patch label denoising method (LossDiff) for improving the classification of whole-slide images of cancer using a convolutional neural network (CNN). Automated whole-slide image classification is often challenging, requiring a large amount of labeled data. Pa...
Autores principales: | Ashraf, Murtaza, Robles, Willmer Rafell Quiñones, Kim, Mujin, Ko, Young Sin, Yi, Mun Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791954/ https://www.ncbi.nlm.nih.gov/pubmed/35082315 http://dx.doi.org/10.1038/s41598-022-05001-8 |
Ejemplares similares
-
Improving quality control in the routine practice for histopathological interpretation of gastrointestinal endoscopic biopsies using artificial intelligence
por: Ko, Young Sin, et al.
Publicado: (2022) -
MixPatch: A New Method for Training Histopathology Image Classifiers
por: Park, Youngjin, et al.
Publicado: (2022) -
Method for Quantum Denoisers Using Convolutional Neural Network
por: Kim, Bong-Hyun, et al.
Publicado: (2022) -
Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra †
por: Barton, Sinead, et al.
Publicado: (2021) -
Multi-View Image Denoising Using Convolutional Neural Network
por: Zhou, Shiwei, et al.
Publicado: (2019)