Cargando…
Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1
Mechanical overload of the vascular wall is a pathological hallmark of life-threatening abdominal aortic aneurysms (AAA). However, how this mechanical stress resonates at the unicellular level of vascular smooth muscle cells (VSMC) is undefined. Here we show defective mechano-phenotype signatures of...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791986/ https://www.ncbi.nlm.nih.gov/pubmed/35082286 http://dx.doi.org/10.1038/s41467-021-27874-5 |
_version_ | 1784640307357286400 |
---|---|
author | Qian, Weiyi Hadi, Tarik Silvestro, Michele Ma, Xiao Rivera, Cristobal F. Bajpai, Apratim Li, Rui Zhang, Zijing Qu, Hengdong Tellaoui, Rayan Sleiman Corsica, Annanina Zias, Ariadne L. Garg, Karan Maldonado, Thomas Ramkhelawon, Bhama Chen, Weiqiang |
author_facet | Qian, Weiyi Hadi, Tarik Silvestro, Michele Ma, Xiao Rivera, Cristobal F. Bajpai, Apratim Li, Rui Zhang, Zijing Qu, Hengdong Tellaoui, Rayan Sleiman Corsica, Annanina Zias, Ariadne L. Garg, Karan Maldonado, Thomas Ramkhelawon, Bhama Chen, Weiqiang |
author_sort | Qian, Weiyi |
collection | PubMed |
description | Mechanical overload of the vascular wall is a pathological hallmark of life-threatening abdominal aortic aneurysms (AAA). However, how this mechanical stress resonates at the unicellular level of vascular smooth muscle cells (VSMC) is undefined. Here we show defective mechano-phenotype signatures of VSMC in AAA measured with ultrasound tweezers-based micromechanical system and single-cell RNA sequencing technique. Theoretical modelling predicts that cytoskeleton alterations fuel cell membrane tension of VSMC, thereby modulating their mechanoallostatic responses which are validated by live micromechanical measurements. Mechanistically, VSMC gradually adopt a mechanically solid-like state by upregulating cytoskeleton crosslinker, α-actinin2, in the presence of AAA-promoting signal, Netrin-1, thereby directly powering the activity of mechanosensory ion channel Piezo1. Inhibition of Piezo1 prevents mice from developing AAA by alleviating pathological vascular remodeling. Our findings demonstrate that deviations of mechanosensation behaviors of VSMC is detrimental for AAA and identifies Piezo1 as a novel culprit of mechanically fatigued aorta in AAA. |
format | Online Article Text |
id | pubmed-8791986 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-87919862022-02-07 Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1 Qian, Weiyi Hadi, Tarik Silvestro, Michele Ma, Xiao Rivera, Cristobal F. Bajpai, Apratim Li, Rui Zhang, Zijing Qu, Hengdong Tellaoui, Rayan Sleiman Corsica, Annanina Zias, Ariadne L. Garg, Karan Maldonado, Thomas Ramkhelawon, Bhama Chen, Weiqiang Nat Commun Article Mechanical overload of the vascular wall is a pathological hallmark of life-threatening abdominal aortic aneurysms (AAA). However, how this mechanical stress resonates at the unicellular level of vascular smooth muscle cells (VSMC) is undefined. Here we show defective mechano-phenotype signatures of VSMC in AAA measured with ultrasound tweezers-based micromechanical system and single-cell RNA sequencing technique. Theoretical modelling predicts that cytoskeleton alterations fuel cell membrane tension of VSMC, thereby modulating their mechanoallostatic responses which are validated by live micromechanical measurements. Mechanistically, VSMC gradually adopt a mechanically solid-like state by upregulating cytoskeleton crosslinker, α-actinin2, in the presence of AAA-promoting signal, Netrin-1, thereby directly powering the activity of mechanosensory ion channel Piezo1. Inhibition of Piezo1 prevents mice from developing AAA by alleviating pathological vascular remodeling. Our findings demonstrate that deviations of mechanosensation behaviors of VSMC is detrimental for AAA and identifies Piezo1 as a novel culprit of mechanically fatigued aorta in AAA. Nature Publishing Group UK 2022-01-26 /pmc/articles/PMC8791986/ /pubmed/35082286 http://dx.doi.org/10.1038/s41467-021-27874-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Qian, Weiyi Hadi, Tarik Silvestro, Michele Ma, Xiao Rivera, Cristobal F. Bajpai, Apratim Li, Rui Zhang, Zijing Qu, Hengdong Tellaoui, Rayan Sleiman Corsica, Annanina Zias, Ariadne L. Garg, Karan Maldonado, Thomas Ramkhelawon, Bhama Chen, Weiqiang Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1 |
title | Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1 |
title_full | Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1 |
title_fullStr | Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1 |
title_full_unstemmed | Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1 |
title_short | Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1 |
title_sort | microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via piezo1 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791986/ https://www.ncbi.nlm.nih.gov/pubmed/35082286 http://dx.doi.org/10.1038/s41467-021-27874-5 |
work_keys_str_mv | AT qianweiyi microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT haditarik microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT silvestromichele microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT maxiao microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT riveracristobalf microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT bajpaiapratim microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT lirui microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT zhangzijing microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT quhengdong microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT tellaouirayansleiman microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT corsicaannanina microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT ziasariadnel microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT gargkaran microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT maldonadothomas microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT ramkhelawonbhama microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 AT chenweiqiang microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1 |