Cargando…

Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1

Mechanical overload of the vascular wall is a pathological hallmark of life-threatening abdominal aortic aneurysms (AAA). However, how this mechanical stress resonates at the unicellular level of vascular smooth muscle cells (VSMC) is undefined. Here we show defective mechano-phenotype signatures of...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Weiyi, Hadi, Tarik, Silvestro, Michele, Ma, Xiao, Rivera, Cristobal F., Bajpai, Apratim, Li, Rui, Zhang, Zijing, Qu, Hengdong, Tellaoui, Rayan Sleiman, Corsica, Annanina, Zias, Ariadne L., Garg, Karan, Maldonado, Thomas, Ramkhelawon, Bhama, Chen, Weiqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791986/
https://www.ncbi.nlm.nih.gov/pubmed/35082286
http://dx.doi.org/10.1038/s41467-021-27874-5
_version_ 1784640307357286400
author Qian, Weiyi
Hadi, Tarik
Silvestro, Michele
Ma, Xiao
Rivera, Cristobal F.
Bajpai, Apratim
Li, Rui
Zhang, Zijing
Qu, Hengdong
Tellaoui, Rayan Sleiman
Corsica, Annanina
Zias, Ariadne L.
Garg, Karan
Maldonado, Thomas
Ramkhelawon, Bhama
Chen, Weiqiang
author_facet Qian, Weiyi
Hadi, Tarik
Silvestro, Michele
Ma, Xiao
Rivera, Cristobal F.
Bajpai, Apratim
Li, Rui
Zhang, Zijing
Qu, Hengdong
Tellaoui, Rayan Sleiman
Corsica, Annanina
Zias, Ariadne L.
Garg, Karan
Maldonado, Thomas
Ramkhelawon, Bhama
Chen, Weiqiang
author_sort Qian, Weiyi
collection PubMed
description Mechanical overload of the vascular wall is a pathological hallmark of life-threatening abdominal aortic aneurysms (AAA). However, how this mechanical stress resonates at the unicellular level of vascular smooth muscle cells (VSMC) is undefined. Here we show defective mechano-phenotype signatures of VSMC in AAA measured with ultrasound tweezers-based micromechanical system and single-cell RNA sequencing technique. Theoretical modelling predicts that cytoskeleton alterations fuel cell membrane tension of VSMC, thereby modulating their mechanoallostatic responses which are validated by live micromechanical measurements. Mechanistically, VSMC gradually adopt a mechanically solid-like state by upregulating cytoskeleton crosslinker, α-actinin2, in the presence of AAA-promoting signal, Netrin-1, thereby directly powering the activity of mechanosensory ion channel Piezo1. Inhibition of Piezo1 prevents mice from developing AAA by alleviating pathological vascular remodeling. Our findings demonstrate that deviations of mechanosensation behaviors of VSMC is detrimental for AAA and identifies Piezo1 as a novel culprit of mechanically fatigued aorta in AAA.
format Online
Article
Text
id pubmed-8791986
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-87919862022-02-07 Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1 Qian, Weiyi Hadi, Tarik Silvestro, Michele Ma, Xiao Rivera, Cristobal F. Bajpai, Apratim Li, Rui Zhang, Zijing Qu, Hengdong Tellaoui, Rayan Sleiman Corsica, Annanina Zias, Ariadne L. Garg, Karan Maldonado, Thomas Ramkhelawon, Bhama Chen, Weiqiang Nat Commun Article Mechanical overload of the vascular wall is a pathological hallmark of life-threatening abdominal aortic aneurysms (AAA). However, how this mechanical stress resonates at the unicellular level of vascular smooth muscle cells (VSMC) is undefined. Here we show defective mechano-phenotype signatures of VSMC in AAA measured with ultrasound tweezers-based micromechanical system and single-cell RNA sequencing technique. Theoretical modelling predicts that cytoskeleton alterations fuel cell membrane tension of VSMC, thereby modulating their mechanoallostatic responses which are validated by live micromechanical measurements. Mechanistically, VSMC gradually adopt a mechanically solid-like state by upregulating cytoskeleton crosslinker, α-actinin2, in the presence of AAA-promoting signal, Netrin-1, thereby directly powering the activity of mechanosensory ion channel Piezo1. Inhibition of Piezo1 prevents mice from developing AAA by alleviating pathological vascular remodeling. Our findings demonstrate that deviations of mechanosensation behaviors of VSMC is detrimental for AAA and identifies Piezo1 as a novel culprit of mechanically fatigued aorta in AAA. Nature Publishing Group UK 2022-01-26 /pmc/articles/PMC8791986/ /pubmed/35082286 http://dx.doi.org/10.1038/s41467-021-27874-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Qian, Weiyi
Hadi, Tarik
Silvestro, Michele
Ma, Xiao
Rivera, Cristobal F.
Bajpai, Apratim
Li, Rui
Zhang, Zijing
Qu, Hengdong
Tellaoui, Rayan Sleiman
Corsica, Annanina
Zias, Ariadne L.
Garg, Karan
Maldonado, Thomas
Ramkhelawon, Bhama
Chen, Weiqiang
Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1
title Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1
title_full Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1
title_fullStr Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1
title_full_unstemmed Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1
title_short Microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via Piezo1
title_sort microskeletal stiffness promotes aortic aneurysm by sustaining pathological vascular smooth muscle cell mechanosensation via piezo1
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791986/
https://www.ncbi.nlm.nih.gov/pubmed/35082286
http://dx.doi.org/10.1038/s41467-021-27874-5
work_keys_str_mv AT qianweiyi microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT haditarik microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT silvestromichele microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT maxiao microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT riveracristobalf microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT bajpaiapratim microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT lirui microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT zhangzijing microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT quhengdong microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT tellaouirayansleiman microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT corsicaannanina microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT ziasariadnel microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT gargkaran microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT maldonadothomas microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT ramkhelawonbhama microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1
AT chenweiqiang microskeletalstiffnesspromotesaorticaneurysmbysustainingpathologicalvascularsmoothmusclecellmechanosensationviapiezo1