Cargando…
A protocol to extract cell-type-specific signatures from differentially expressed genes in bulk-tissue RNA-seq
Bulk-tissue RNA-seq is widely used to dissect variation in gene expression levels across tissues and under different experimental conditions. Here, we introduce a protocol that leverages existing single-cell expression data to deconvolve patterns of cell-type-specific gene expression in differential...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792262/ https://www.ncbi.nlm.nih.gov/pubmed/35118429 http://dx.doi.org/10.1016/j.xpro.2022.101121 |
Sumario: | Bulk-tissue RNA-seq is widely used to dissect variation in gene expression levels across tissues and under different experimental conditions. Here, we introduce a protocol that leverages existing single-cell expression data to deconvolve patterns of cell-type-specific gene expression in differentially expressed gene lists from highly heterogeneous tissue. We apply this protocol to interrogate cell-type-specific gene expression and variation in cell type composition between the distinct sublayers of the hippocampal CA1 region of the brain in a rodent model of epilepsy. For complete details on the use and execution of this protocol, please refer to Cid et al. (2021). |
---|