Cargando…
Multi-Source and Multi-Representation Adaptation for Cross-Domain Electroencephalography Emotion Recognition
Due to the non-invasiveness and high precision of electroencephalography (EEG), the combination of EEG and artificial intelligence (AI) is often used for emotion recognition. However, the internal differences in EEG data have become an obstacle to classification accuracy. To solve this problem, cons...
Autores principales: | Cao, Jiangsheng, He, Xueqin, Yang, Chenhui, Chen, Sifang, Li, Zhangyu, Wang, Zhanxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792438/ https://www.ncbi.nlm.nih.gov/pubmed/35095696 http://dx.doi.org/10.3389/fpsyg.2021.809459 |
Ejemplares similares
-
Multi-source joint domain adaptation for cross-subject and cross-session emotion recognition from electroencephalography
por: Liang, Shengjin, et al.
Publicado: (2022) -
A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification
por: Ni, Tongguang, et al.
Publicado: (2021) -
A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition
por: Chai, Xin, et al.
Publicado: (2017) -
Robust Latent Multi-Source Adaptation for Encephalogram-Based Emotion Recognition
por: Tao, Jianwen, et al.
Publicado: (2022) -
Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor
por: He, Xueqin, et al.
Publicado: (2021)