Cargando…
U-shaped GAN for Semi-Supervised Learning and Unsupervised Domain Adaptation in High Resolution Chest Radiograph Segmentation
Deep learning has achieved considerable success in medical image segmentation. However, applying deep learning in clinical environments often involves two problems: (1) scarcity of annotated data as data annotation is time-consuming and (2) varying attributes of different datasets due to domain shif...
Autores principales: | Wang, Hongyu, Gu, Hong, Qin, Pan, Wang, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792862/ https://www.ncbi.nlm.nih.gov/pubmed/35096877 http://dx.doi.org/10.3389/fmed.2021.782664 |
Ejemplares similares
-
Enhanced resolution and sensitivity acoustic-resolution photoacoustic microscopy with semi/unsupervised GANs
por: Le, Thanh Dat, et al.
Publicado: (2023) -
Chest L-Transformer: Local Features With Position Attention for Weakly Supervised Chest Radiograph Segmentation and Classification
por: Gu, Hong, et al.
Publicado: (2022) -
Semi-MsST-GAN: A Semi-Supervised Segmentation Method for Corneal Ulcer Segmentation in Slit-Lamp Images
por: Wang, Tingting, et al.
Publicado: (2022) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014) -
Semi-supervised CycleGAN for domain transformation of chest CT images and its application to opacity classification of diffuse lung diseases
por: Mabu, Shingo, et al.
Publicado: (2021)