Cargando…
TransDTI: Transformer-Based Language Models for Estimating DTIs and Building a Drug Recommendation Workflow
[Image: see text] The identification of novel drug–target interactions is a labor-intensive and low-throughput process. In silico alternatives have proved to be of immense importance in assisting the drug discovery process. Here, we present TransDTI, a multiclass classification and regression workfl...
Autores principales: | Kalakoti, Yogesh, Yadav, Shashank, Sundar, Durai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792915/ https://www.ncbi.nlm.nih.gov/pubmed/35097268 http://dx.doi.org/10.1021/acsomega.1c05203 |
Ejemplares similares
-
Multi-TransDTI: Transformer for Drug–Target Interaction Prediction Based on Simple Universal Dictionaries with Multi-View Strategy
por: Wang, Gan, et al.
Publicado: (2022) -
Deep Neural Network-Assisted Drug Recommendation Systems
for Identifying Potential Drug–Target Interactions
por: Kalakoti, Yogesh, et al.
Publicado: (2022) -
SurvCNN: A Discrete Time-to-Event Cancer Survival Estimation Framework Using Image Representations of Omics Data
por: Kalakoti, Yogesh, et al.
Publicado: (2021) -
Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer
por: Malik, Vidhi, et al.
Publicado: (2021) -
Genome Sequence of a Potent Biosurfactant-Producing Bacterium, Franconibacter sp. Strain IITDAS19
por: Sharma, Jyoti, et al.
Publicado: (2022)