Cargando…
Distance-Entropy: An Effective Indicator for Selecting Informative Data
Smart agriculture is inseparable from data gathering, analysis, and utilization. A high-quality data improves the efficiency of intelligent algorithms and helps reduce the costs of data collection and transmission. However, the current image quality assessment research focuses on visual quality, whi...
Autores principales: | Li, Yang, Chao, Xuewei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792929/ https://www.ncbi.nlm.nih.gov/pubmed/35095987 http://dx.doi.org/10.3389/fpls.2021.818895 |
Ejemplares similares
-
Toward Sustainability: Trade-Off Between Data Quality and Quantity in Crop Pest Recognition
por: Li, Yang, et al.
Publicado: (2021) -
Multi-index fuzzy comprehensive evaluation model with information entropy of alfalfa salt tolerance based on LiDAR data and hyperspectral image data
por: Zhang, Jiaxin, et al.
Publicado: (2023) -
Predicting heterosis via genetic distance and the number of SNPs in selected segments of chromosomes in maize
por: Jiang, Fuyan, et al.
Publicado: (2023) -
Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances
por: Fort, Florian, et al.
Publicado: (2015) -
Reducing the Nitrate Content in Vegetables Through Joint Regulation of Short-Distance Distribution and Long-Distance Transport
por: Liang, Guihong, et al.
Publicado: (2020)