Cargando…
Skin-Inspired Flexible and Stretchable Electrospun Carbon Nanofiber Sensors for Neuromorphic Sensing
[Image: see text] During the past few decades, a significant amount of research effort has been dedicated toward developing skin-inspired sensors for real-time human motion monitoring and next-generation robotic devices. Although several flexible and wearable sensors have been developed in the past,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793024/ https://www.ncbi.nlm.nih.gov/pubmed/35098136 http://dx.doi.org/10.1021/acsaelm.1c01010 |
_version_ | 1784640506672709632 |
---|---|
author | Sengupta, Debarun Mastella, Michele Chicca, Elisabetta Kottapalli, Ajay Giri Prakash |
author_facet | Sengupta, Debarun Mastella, Michele Chicca, Elisabetta Kottapalli, Ajay Giri Prakash |
author_sort | Sengupta, Debarun |
collection | PubMed |
description | [Image: see text] During the past few decades, a significant amount of research effort has been dedicated toward developing skin-inspired sensors for real-time human motion monitoring and next-generation robotic devices. Although several flexible and wearable sensors have been developed in the past, the need of the hour is developing accurate, reliable, sophisticated, facile yet inexpensive flexible sensors coupled with neuromorphic systems or spiking neural networks to encode tactile information without the need for complex digital architectures, thus achieving true skin-like sensing with limited resources. In this work, we propose an approach entailing carbon nanofiber–polydimethylsiloxane composite-based piezoresistive sensors, coupled with spiking neural networks, to mimic skin-like sensing. The strain and pressure sensors have been combined with appropriately designed neural networks to encode analog voltages to spikes to recreate bioinspired tactile sensing and proprioception. To further validate the proprioceptive capability of the system, a gesture tracking smart glove, combined with a spiking neural network, was demonstrated. Wearable and flexible sensors with accompanying neural networks such as the ones proposed in this work will pave the way for a future generation of skin-mimetic sensors for advanced prosthetic devices, apparel integrable smart sensors for human motion monitoring, and human-machine interfaces. |
format | Online Article Text |
id | pubmed-8793024 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87930242022-01-28 Skin-Inspired Flexible and Stretchable Electrospun Carbon Nanofiber Sensors for Neuromorphic Sensing Sengupta, Debarun Mastella, Michele Chicca, Elisabetta Kottapalli, Ajay Giri Prakash ACS Appl Electron Mater [Image: see text] During the past few decades, a significant amount of research effort has been dedicated toward developing skin-inspired sensors for real-time human motion monitoring and next-generation robotic devices. Although several flexible and wearable sensors have been developed in the past, the need of the hour is developing accurate, reliable, sophisticated, facile yet inexpensive flexible sensors coupled with neuromorphic systems or spiking neural networks to encode tactile information without the need for complex digital architectures, thus achieving true skin-like sensing with limited resources. In this work, we propose an approach entailing carbon nanofiber–polydimethylsiloxane composite-based piezoresistive sensors, coupled with spiking neural networks, to mimic skin-like sensing. The strain and pressure sensors have been combined with appropriately designed neural networks to encode analog voltages to spikes to recreate bioinspired tactile sensing and proprioception. To further validate the proprioceptive capability of the system, a gesture tracking smart glove, combined with a spiking neural network, was demonstrated. Wearable and flexible sensors with accompanying neural networks such as the ones proposed in this work will pave the way for a future generation of skin-mimetic sensors for advanced prosthetic devices, apparel integrable smart sensors for human motion monitoring, and human-machine interfaces. American Chemical Society 2022-01-02 2022-01-25 /pmc/articles/PMC8793024/ /pubmed/35098136 http://dx.doi.org/10.1021/acsaelm.1c01010 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Sengupta, Debarun Mastella, Michele Chicca, Elisabetta Kottapalli, Ajay Giri Prakash Skin-Inspired Flexible and Stretchable Electrospun Carbon Nanofiber Sensors for Neuromorphic Sensing |
title | Skin-Inspired Flexible and Stretchable Electrospun
Carbon Nanofiber Sensors for Neuromorphic Sensing |
title_full | Skin-Inspired Flexible and Stretchable Electrospun
Carbon Nanofiber Sensors for Neuromorphic Sensing |
title_fullStr | Skin-Inspired Flexible and Stretchable Electrospun
Carbon Nanofiber Sensors for Neuromorphic Sensing |
title_full_unstemmed | Skin-Inspired Flexible and Stretchable Electrospun
Carbon Nanofiber Sensors for Neuromorphic Sensing |
title_short | Skin-Inspired Flexible and Stretchable Electrospun
Carbon Nanofiber Sensors for Neuromorphic Sensing |
title_sort | skin-inspired flexible and stretchable electrospun
carbon nanofiber sensors for neuromorphic sensing |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793024/ https://www.ncbi.nlm.nih.gov/pubmed/35098136 http://dx.doi.org/10.1021/acsaelm.1c01010 |
work_keys_str_mv | AT senguptadebarun skininspiredflexibleandstretchableelectrospuncarbonnanofibersensorsforneuromorphicsensing AT mastellamichele skininspiredflexibleandstretchableelectrospuncarbonnanofibersensorsforneuromorphicsensing AT chiccaelisabetta skininspiredflexibleandstretchableelectrospuncarbonnanofibersensorsforneuromorphicsensing AT kottapalliajaygiriprakash skininspiredflexibleandstretchableelectrospuncarbonnanofibersensorsforneuromorphicsensing |