Cargando…

A Hierarchical Structure of Flower-Like Zinc Oxide and Poly(Vinyl Alcohol-co-Ethylene) Nanofiber Hybrid Membranes for High-Performance Air Filters

[Image: see text] In this article, we reported a hierarchical structure of flower-like zinc oxide (ZnO) and poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofiber (ZnO@NF) hybrid membranes for high-performance air filters. Monodispersed flower-like ZnO superstructures were fabricated using a template...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Zhi, Xia, Ming, Xiong, Ziyin, Wu, Yi, Cheng, Pan, Cheng, Qin, Xu, Jia, Wang, Dong, Liu, Ke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793060/
https://www.ncbi.nlm.nih.gov/pubmed/35097296
http://dx.doi.org/10.1021/acsomega.1c06114
Descripción
Sumario:[Image: see text] In this article, we reported a hierarchical structure of flower-like zinc oxide (ZnO) and poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofiber (ZnO@NF) hybrid membranes for high-performance air filters. Monodispersed flower-like ZnO superstructures were fabricated using a template-free and surfactant-free hydrothermal method, and PVA-co-PE nanofiber yarns were prepared using a melt extrusion phase separation approach. The PVA-co-PE nanofiber yarns were subjected to high-speed shearing in a mixed aqueous solution of isopropanol and water to obtain a stably dispersed nanofiber suspension. The ZnO@NF hybrid air filter was obtained by coating the mixture of flower-like ZnO superstructures and the PVA-co-PE nanofiber suspension on the surface of the polypropylene (PP) meltblown nonwoven with the electret charge eliminated. The filtration efficiency of the ZnO@NF hybrid air filter increases with increasing loading amount of the flower-like ZnO superstructures, while the pressure drop decreases. The flower-like ZnO superstructures were incorporated into the nanofiber-interconnected networks, which significantly reduces the pressure drop of the pure PVA-co-PE nanofiber air filter. The filtration efficiency of the ZnO@NF hybrid air filter is much higher than that of PP meltblown nonwoven with eliminated electret charge, solving the hidden problem of electret charge dissipation during the protection process. It is demonstrated that these nanofiber hybrid air filters have great application potential in some special areas such as high-temperature and high-humidity environments.