Cargando…
Attribution-Driven Explanation of the Deep Neural Network Model via Conditional Microstructure Image Synthesis
[Image: see text] The materials science community has been increasingly interested in harnessing the power of deep learning to solve various domain challenges. However, despite their effectiveness in building highly predictive models, e.g., predicting material properties from microstructure imaging,...
Autores principales: | Liu, Shusen, Kailkhura, Bhavya, Zhang, Jize, Hiszpanski, Anna M., Robertson, Emily, Loveland, Donald, Zhong, Xiaoting, Han, T. Yong-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793074/ https://www.ncbi.nlm.nih.gov/pubmed/35097261 http://dx.doi.org/10.1021/acsomega.1c04796 |
Ejemplares similares
-
Leveraging Uncertainty from Deep Learning for Trustworthy
Material Discovery Workflows
por: Zhang, Jize, et al.
Publicado: (2021) -
Preventing Failures by Dataset Shift Detection in Safety-Critical Graph Applications
por: Song, Hoseung, et al.
Publicado: (2021) -
Editorial: Safe and Trustworthy Machine Learning
por: Kailkhura, Bhavya, et al.
Publicado: (2021) -
Explanation-Driven Deep Learning Model for Prediction of Brain Tumour Status Using MRI Image Data
por: Gaur, Loveleen, et al.
Publicado: (2022) -
BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model
por: Bhandari, Mohan, et al.
Publicado: (2023)