Cargando…
Deconvolution Tactics and Normalization in Renal Spatial Transcriptomics
The kidney is composed of heterogeneous groups of epithelial, endothelial, immune, and stromal cells, all in close anatomic proximity. Spatial transcriptomic technologies allow the interrogation of in situ expression signatures in health and disease, overlaid upon a histologic image. However, some s...
Autores principales: | Melo Ferreira, Ricardo, Freije, Benjamin J., Eadon, Michael T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793484/ https://www.ncbi.nlm.nih.gov/pubmed/35095570 http://dx.doi.org/10.3389/fphys.2021.812947 |
Ejemplares similares
-
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
Benchmarking and integration of methods for deconvoluting spatial transcriptomic data
por: Yan, Lulu, et al.
Publicado: (2022) -
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
por: Long, Yahui, et al.
Publicado: (2023) -
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome
por: Zhang, Yingkun, et al.
Publicado: (2022)