Cargando…
An expandable informatics framework for enhancing central cancer registries with digital pathology specimens, computational imaging tools, and advanced mining capabilities
BACKGROUND: Population-based state cancer registries are an authoritative source for cancer statistics in the United States. They routinely collect a variety of data, including patient demographics, primary tumor site, stage at diagnosis, first course of treatment, and survival, on every cancer case...
Autores principales: | Foran, David J., Durbin, Eric B., Chen, Wenjin, Sadimin, Evita, Sharma, Ashish, Banerjee, Imon, Kurc, Tahsin, Li, Nan, Stroup, Antoinette M., Harris, Gerald, Gu, Annie, Schymura, Maria, Gupta, Rajarsi, Bremer, Erich, Balsamo, Joseph, DiPrima, Tammy, Wang, Feiqiao, Abousamra, Shahira, Samaras, Dimitris, Hands, Isaac, Ward, Kevin, Saltz, Joel H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794027/ https://www.ncbi.nlm.nih.gov/pubmed/35136672 http://dx.doi.org/10.4103/jpi.jpi_31_21 |
Ejemplares similares
-
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
por: Abousamra, Shahira, et al.
Publicado: (2022) -
Towards Generation, Management, and Exploration of Combined Radiomics and Pathomics Datasets for Cancer Research
por: Saltz, Joel, et al.
Publicado: (2017) -
Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020) -
Publisher Correction to: Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020) -
A data model and database for high-resolution pathology analytical image informatics
por: Wang, Fusheng, et al.
Publicado: (2011)