Cargando…
Outcome and biomarker supervised deep learning for survival prediction in two multicenter breast cancer series
BACKGROUND: Prediction of clinical outcomes for individual cancer patients is an important step in the disease diagnosis and subsequently guides the treatment and patient counseling. In this work, we develop and evaluate a joint outcome and biomarker supervised (estrogen receptor expression and ERBB...
Autores principales: | Bychkov, Dmitrii, Joensuu, Heikki, Nordling, Stig, Tiulpin, Aleksei, Kücükel, Hakan, Lundin, Mikael, Sihto, Harri, Isola, Jorma, Lehtimäki, Tiina, Kellokumpu-Lehtinen, Pirkko-Liisa, von Smitten, Karl, Lundin, Johan, Linder, Nina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794033/ https://www.ncbi.nlm.nih.gov/pubmed/35136676 http://dx.doi.org/10.4103/jpi.jpi_29_21 |
Ejemplares similares
-
Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy
por: Bychkov, Dmitrii, et al.
Publicado: (2021) -
Long-term prognosis of breast cancer detected by mammography screening or other methods
por: Lehtimäki, Tiina, et al.
Publicado: (2011) -
Breast cancer outcome prediction with tumour tissue images and machine learning
por: Turkki, Riku, et al.
Publicado: (2019) -
Development and evaluation of a virtual microscopy application for automated assessment of Ki-67 expression in breast cancer
por: Konsti, Juho, et al.
Publicado: (2011) -
Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study
por: Sihto, Harri, et al.
Publicado: (2011)