Cargando…
Assessing the impact of the density and sparsity of the network on community detection using a Gaussian mixture random partition graph generator
Identification of sub-networks within a network is essential to understand the functionality of a network. This process is called as ’Community detection’. There are various existing community detection algorithms, and the performance of these algorithms can be varied based on the network structure....
Autores principales: | Wickramasinghe, Ashani, Muthukumarana, Saman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794047/ https://www.ncbi.nlm.nih.gov/pubmed/35106437 http://dx.doi.org/10.1007/s41870-022-00873-5 |
Ejemplares similares
-
Temperature clusters in commercial buildings using k-means and time series clustering
por: Wickramasinghe, Ashani, et al.
Publicado: (2022) -
Sparsity: Graphs, Structures, and Algorithms
por: Nešetril, Jaroslav, et al.
Publicado: (2012) -
Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry
por: Polanski, Andrzej, et al.
Publicado: (2015) -
A Nonparametric Model for Multi-Manifold Clustering with Mixture of Gaussians and Graph Consistency
por: Ye, Xulun, et al.
Publicado: (2018) -
Exact Gaussian processes for massive datasets via non-stationary sparsity-discovering kernels
por: Noack, Marcus M., et al.
Publicado: (2023)