Cargando…
Automatic decomposition of electrophysiological data into distinct nonsinusoidal oscillatory modes
Neurophysiological signals are often noisy, nonsinusoidal, and consist of transient bursts. Extraction and analysis of oscillatory features (such as waveform shape and cross-frequency coupling) in such data sets remains difficult. This limits our understanding of brain dynamics and its functional im...
Autores principales: | Fabus, Marco S., Quinn, Andrew J., Warnaby, Catherine E., Woolrich, Mark W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794054/ https://www.ncbi.nlm.nih.gov/pubmed/34614377 http://dx.doi.org/10.1152/jn.00315.2021 |
Ejemplares similares
-
Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics
por: Quinn, Andrew J., et al.
Publicado: (2021) -
Brainwave viscosity in propofol anaesthesia
por: Fabus, M.S., et al.
Publicado: (2022) -
Energy flow and power factor in nonsinusoidal circuits
por: Shepherd, W D, et al.
Publicado: (1979) -
Real-time visuomotor behavior and electrophysiology recording setup for use with humans and monkeys
por: de Haan, Marcel Jan, et al.
Publicado: (2018) -
Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function
por: Bishop, Martin J., et al.
Publicado: (2010)