Cargando…
Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks
In medical image classification tasks, it is common to find that the number of normal samples far exceeds the number of abnormal samples. In such class-imbalanced situations, reliable training of deep neural networks continues to be a major challenge, therefore biasing the predicted class probabilit...
Autores principales: | Rajaraman, Sivaramakrishnan, Ganesan, Prasanth, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794113/ https://www.ncbi.nlm.nih.gov/pubmed/35085334 http://dx.doi.org/10.1371/journal.pone.0262838 |
Ejemplares similares
-
Novel loss functions for ensemble-based medical image classification
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
Weakly Labeled Data Augmentation for Deep Learning: A Study on COVID-19 Detection in Chest X-Rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020) -
Training deep learning algorithms with weakly labeled pneumonia chest X-ray data for COVID-19 detection
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020) -
Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2019) -
Semantically Redundant Training Data Removal and Deep Model Classification Performance: A Study with Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023)