Cargando…
Investor sentiment-aware prediction model for P2P lending indicators based on LSTM
In recent years, online lending has created many risks while providing lending convenience to Chinese individuals and small and medium-sized enterprises. The timely assessment and prediction of the status of industry indicators is an important prerequisite for effectively preventing the spread of ri...
Autores principales: | Cui, Yanyan, Liu, Lixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794130/ https://www.ncbi.nlm.nih.gov/pubmed/35085306 http://dx.doi.org/10.1371/journal.pone.0262539 |
Ejemplares similares
-
P2P Lending platforms in Malaysia: the awareness among Malaysian adults
por: Nguyen, Lan Thi Phuong, et al.
Publicado: (2023) -
P2P Lending Default Prediction Based on AI and Statistical Models
por: Ko, Po-Chang, et al.
Publicado: (2022) -
Investor sentiment and bitcoin prices
por: Koutmos, Dimitrios
Publicado: (2022) -
Determinants of Default in P2P Lending
por: Serrano-Cinca, Carlos, et al.
Publicado: (2015) -
How to gauge investor behavior? A comparison of online investor sentiment measures
por: Ballinari, Daniele, et al.
Publicado: (2021)