Cargando…
Different cell imaging methods did not significantly improve immune cell image classification performance
Developments in high-throughput microscopy have made it possible to collect huge amounts of cell image data that are difficult to analyse manually. Machine learning (e.g., deep learning) is often employed to automate the extraction of information from these data, such as cell counting, cell type cla...
Autores principales: | Ogawa, Taisaku, Ochiai, Koji, Iwata, Tomoharu, Ikawa, Tomokatsu, Tsuzuki, Taku, Shiroguchi, Katsuyuki, Takahashi, Koichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794178/ https://www.ncbi.nlm.nih.gov/pubmed/35085287 http://dx.doi.org/10.1371/journal.pone.0262397 |
Ejemplares similares
-
Robotic data acquisition with deep learning enables cell image–based prediction of transcriptomic phenotypes
por: Jin, Jianshi, et al.
Publicado: (2022) -
The efficacy and further functional advantages of random-base molecular barcodes for absolute and digital quantification of nucleic acid molecules
por: Ogawa, Taisaku, et al.
Publicado: (2017) -
Identifying a Lung Stem Cell Subpopulation by Combining Single-Cell Morphometrics, Organoid Culture, and Transcriptomics
por: Fujimura, Takashi, et al.
Publicado: (2023) -
Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes
por: Nishida, Mikako, et al.
Publicado: (2021) -
Automated histological classification of whole slide images of colorectal biopsy specimens
por: Yoshida, Hiroshi, et al.
Publicado: (2017)