Cargando…
Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach
Breast cancer is one of the worst illnesses, with a higher fatality rate among women globally. Breast cancer detection needs accurate mammography interpretation and analysis, which is challenging for radiologists owing to the intricate anatomy of the breast and low image quality. Advances in deep le...
Autores principales: | Mahmood, Tariq, Li, Jianqiang, Pei, Yan, Akhtar, Faheem, Rehman, Mujeeb Ur, Wasti, Shahbaz Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794221/ https://www.ncbi.nlm.nih.gov/pubmed/35085352 http://dx.doi.org/10.1371/journal.pone.0263126 |
Ejemplares similares
-
An Automatic Detection and Localization of Mammographic Microcalcifications ROI with Multi-Scale Features Using the Radiomics Analysis Approach
por: Mahmood, Tariq, et al.
Publicado: (2021) -
Computer Vision-Based Microcalcification Detection in Digital Mammograms Using Fully Connected Depthwise Separable Convolutional Neural Network
por: Rehman, Khalil ur, et al.
Publicado: (2021) -
An Automated In-Depth Feature Learning Algorithm for Breast Abnormality Prognosis and Robust Characterization from Mammography Images Using Deep Transfer Learning
por: Mahmood, Tariq, et al.
Publicado: (2021) -
Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network
por: Rahman, Hameedur, et al.
Publicado: (2023) -
Architectural Distortion-Based Digital Mammograms Classification Using Depth Wise Convolutional Neural Network
por: Rehman, Khalil ur, et al.
Publicado: (2021)