Cargando…
Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics
Machine learning has been recently used to predict therapeutic antibody aggregation rates and viscosity at high concentrations (150 mg/ml). These works focused on commercially available antibodies, which may have been optimized for stability. In this study, we measured accelerated aggregation rates...
Autores principales: | Lai, Pin-Kuang, Gallegos, Austin, Mody, Neil, Sathish, Hasige A., Trout, Bernhardt L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794240/ https://www.ncbi.nlm.nih.gov/pubmed/35075980 http://dx.doi.org/10.1080/19420862.2022.2026208 |
Ejemplares similares
-
Molecular computations of preferential interactions of proline, arginine.HCl, and NaCl with IgG1 antibodies and their impact on aggregation and viscosity
por: Cloutier, Theresa K., et al.
Publicado: (2020) -
Calculation of therapeutic antibody viscosity with coarse-grained models, hydrodynamic calculations and machine learning-based parameters
por: Lai, Pin-Kuang, et al.
Publicado: (2021) -
Differences in human IgG1 and IgG4 S228P monoclonal antibodies viscosity and self-interactions: Experimental assessment and computational predictions of domain interactions
por: Lai, Pin-Kuang, et al.
Publicado: (2021) -
Comparison of Strategies in Development and Manufacturing of Low Viscosity, Ultra-High Concentration Formulation for IgG1 Antibody
por: Deokar, Vaibhav, et al.
Publicado: (2020) -
DeepSCM: An efficient convolutional neural network surrogate model for the screening of therapeutic antibody viscosity
por: Lai, Pin-Kuang
Publicado: (2022)