Cargando…

lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR-98-5p/Tbx5 axis in MC3T3-E1 cells

Long non-coding (lnc)RNA KCNQ1 opposite strand/antisense transcript 1 (Kcnq1ot1) has been shown to regulate multiple biological processes. However, the functional role of Kcnq1ot1 in osteoporosis and the underlying mechanism are still unclear. The present study aimed to investigate the function of l...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Furong, Zhang, Fucai, Zheng, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794546/
https://www.ncbi.nlm.nih.gov/pubmed/35126697
http://dx.doi.org/10.3892/etm.2022.11117
_version_ 1784640836685791232
author Wang, Furong
Zhang, Fucai
Zheng, Feng
author_facet Wang, Furong
Zhang, Fucai
Zheng, Feng
author_sort Wang, Furong
collection PubMed
description Long non-coding (lnc)RNA KCNQ1 opposite strand/antisense transcript 1 (Kcnq1ot1) has been shown to regulate multiple biological processes. However, the functional role of Kcnq1ot1 in osteoporosis and the underlying mechanism are still unclear. The present study aimed to investigate the function of lncRNA Kcnq1ot1 in osteogenic differentiation. Alkaline phosphatase (ALP) activity was measured using an ALP assay kit. Western blotting was performed to assess the expression levels of osteogenic differentiation-associated proteins. Reverse transcription-quantitative PCR was performed to detect Kcnq1ot1, microRNA (miR)-98-5p and T-box transcription factor 5 (Tbx5) expression levels. The binding of Kcnq1ot1 with miR-98-5p and that of miR-98-5p with Tbx5 were predicted by starBase and TargetScan databases, respectively, and verified using dual luciferase reporter assays. The mineralization of MC3T3-E1 cells was observed using an Alizarin red S staining assay. The results revealed that expression of Kcnq1ot1 was increased and that of miR-98-5p was decreased during osteogenic differentiation. Additionally, Kcnq1ot1 was shown to target miR-98-5p and inhibit its expression. Inhibiting miR-98-5p reversed the inhibitory effect of Kcnq1ot1 knockdown on osteogenic differentiation and mineralization of MC3T3-E1 cells. Furthermore, Kcnq1ot1 regulated Tbx5 expression via miR-98-5p. Overexpressing miR-98-5p or downregulating Tbx5 expression reversed the promotive effect of Kcnq1ot1 overexpression on osteogenic differentiation and mineralization of MC3T3-E1 cells. In conclusion, these findings suggested that Kcnq1ot1 may promote bone formation by inhibiting miR-98-5p and upregulating Tbx5. Kcnq1ot1, miR-98-5p and Tbx5 may therefore serve as promising targets for the treatment of osteoporosis.
format Online
Article
Text
id pubmed-8794546
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-87945462022-02-03 lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR-98-5p/Tbx5 axis in MC3T3-E1 cells Wang, Furong Zhang, Fucai Zheng, Feng Exp Ther Med Articles Long non-coding (lnc)RNA KCNQ1 opposite strand/antisense transcript 1 (Kcnq1ot1) has been shown to regulate multiple biological processes. However, the functional role of Kcnq1ot1 in osteoporosis and the underlying mechanism are still unclear. The present study aimed to investigate the function of lncRNA Kcnq1ot1 in osteogenic differentiation. Alkaline phosphatase (ALP) activity was measured using an ALP assay kit. Western blotting was performed to assess the expression levels of osteogenic differentiation-associated proteins. Reverse transcription-quantitative PCR was performed to detect Kcnq1ot1, microRNA (miR)-98-5p and T-box transcription factor 5 (Tbx5) expression levels. The binding of Kcnq1ot1 with miR-98-5p and that of miR-98-5p with Tbx5 were predicted by starBase and TargetScan databases, respectively, and verified using dual luciferase reporter assays. The mineralization of MC3T3-E1 cells was observed using an Alizarin red S staining assay. The results revealed that expression of Kcnq1ot1 was increased and that of miR-98-5p was decreased during osteogenic differentiation. Additionally, Kcnq1ot1 was shown to target miR-98-5p and inhibit its expression. Inhibiting miR-98-5p reversed the inhibitory effect of Kcnq1ot1 knockdown on osteogenic differentiation and mineralization of MC3T3-E1 cells. Furthermore, Kcnq1ot1 regulated Tbx5 expression via miR-98-5p. Overexpressing miR-98-5p or downregulating Tbx5 expression reversed the promotive effect of Kcnq1ot1 overexpression on osteogenic differentiation and mineralization of MC3T3-E1 cells. In conclusion, these findings suggested that Kcnq1ot1 may promote bone formation by inhibiting miR-98-5p and upregulating Tbx5. Kcnq1ot1, miR-98-5p and Tbx5 may therefore serve as promising targets for the treatment of osteoporosis. D.A. Spandidos 2022-03 2022-01-05 /pmc/articles/PMC8794546/ /pubmed/35126697 http://dx.doi.org/10.3892/etm.2022.11117 Text en Copyright: © Wang et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Wang, Furong
Zhang, Fucai
Zheng, Feng
lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR-98-5p/Tbx5 axis in MC3T3-E1 cells
title lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR-98-5p/Tbx5 axis in MC3T3-E1 cells
title_full lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR-98-5p/Tbx5 axis in MC3T3-E1 cells
title_fullStr lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR-98-5p/Tbx5 axis in MC3T3-E1 cells
title_full_unstemmed lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR-98-5p/Tbx5 axis in MC3T3-E1 cells
title_short lncRNA Kcnq1ot1 promotes bone formation by inhibiting miR-98-5p/Tbx5 axis in MC3T3-E1 cells
title_sort lncrna kcnq1ot1 promotes bone formation by inhibiting mir-98-5p/tbx5 axis in mc3t3-e1 cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794546/
https://www.ncbi.nlm.nih.gov/pubmed/35126697
http://dx.doi.org/10.3892/etm.2022.11117
work_keys_str_mv AT wangfurong lncrnakcnq1ot1promotesboneformationbyinhibitingmir985ptbx5axisinmc3t3e1cells
AT zhangfucai lncrnakcnq1ot1promotesboneformationbyinhibitingmir985ptbx5axisinmc3t3e1cells
AT zhengfeng lncrnakcnq1ot1promotesboneformationbyinhibitingmir985ptbx5axisinmc3t3e1cells