Cargando…
Harnessing Large-Scale Herbarium Image Datasets Through Representation Learning
The mobilization of large-scale datasets of specimen images and metadata through herbarium digitization provide a rich environment for the application and development of machine learning techniques. However, limited access to computational resources and uneven progress in digitization, especially fo...
Autores principales: | Walker, Barnaby E., Tucker, Allan, Nicolson, Nicky |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794728/ https://www.ncbi.nlm.nih.gov/pubmed/35095977 http://dx.doi.org/10.3389/fpls.2021.806407 |
Ejemplares similares
-
The Herbarium 2021 Half–Earth Challenge Dataset and Machine Learning Competition
por: de Lutio, Riccardo, et al.
Publicado: (2022) -
Prediction of Lime Tolerance in Rhododendron Based on Herbarium Specimen and Geochemical Data
por: Wang, Shusheng, et al.
Publicado: (2018) -
Editorial: Harnessing genebanks: High-throughput phenotyping and genotyping of crop wild relatives and landraces
por: Cortés, Andrés J., et al.
Publicado: (2023) -
Computational analyses of ancient pathogen DNA from herbarium samples: challenges and prospects
por: Yoshida, Kentaro, et al.
Publicado: (2015) -
A Target Capture-Based Method to Estimate Ploidy From Herbarium Specimens
por: Viruel, Juan, et al.
Publicado: (2019)