Cargando…
The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation
The flagellar motor stator is an ion channel nanomachine that assembles as a ring of the MotA(5)MotB(2) units at the flagellar base. The role of accessory proteins required for stator assembly and activation remains largely enigmatic. Here, we show that one such assembly factor, the conserved protei...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794807/ https://www.ncbi.nlm.nih.gov/pubmed/35046042 http://dx.doi.org/10.1073/pnas.2118401119 |
_version_ | 1784640903815626752 |
---|---|
author | Tachiyama, Shoichi Chan, Kar L. Liu, Xiaolin Hathroubi, Skander Peterson, Briana Khan, Mohammad F. Ottemann, Karen M. Liu, Jun Roujeinikova, Anna |
author_facet | Tachiyama, Shoichi Chan, Kar L. Liu, Xiaolin Hathroubi, Skander Peterson, Briana Khan, Mohammad F. Ottemann, Karen M. Liu, Jun Roujeinikova, Anna |
author_sort | Tachiyama, Shoichi |
collection | PubMed |
description | The flagellar motor stator is an ion channel nanomachine that assembles as a ring of the MotA(5)MotB(2) units at the flagellar base. The role of accessory proteins required for stator assembly and activation remains largely enigmatic. Here, we show that one such assembly factor, the conserved protein FliL, forms an integral part of the Helicobacter pylori flagellar motor in a position that colocalizes with the stator. Cryogenic electron tomography reconstructions of the intact motor in whole wild-type cells and cells lacking FliL revealed that the periplasmic domain of FliL (FliL-C) forms 18 circumferentially positioned rings integrated with the 18 MotAB units. FliL-C formed partial rings in the crystal, and the crystal structure–based full ring model was consistent with the shape of the rings observed in situ. Our data suggest that each FliL ring is coaxially sandwiched between the MotA ring and the dimeric periplasmic MotB moiety of the stator unit and that the central hole of the FliL ring has density that is consistent with the plug/linker region of MotB in its extended, active conformation. Significant structural similarities were found between FliL-C and stomatin/prohibitin/flotillin/HflK/C domains of scaffolding proteins, suggesting that FliL acts as a scaffold. The binding energy released upon association of FliL with the stator units could be used to power the release of the plug helices. The finding that isolated FliL-C forms stable partial rings provides an insight into the putative mechanism by which the FliL rings assemble around the stator units. |
format | Online Article Text |
id | pubmed-8794807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-87948072022-07-19 The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation Tachiyama, Shoichi Chan, Kar L. Liu, Xiaolin Hathroubi, Skander Peterson, Briana Khan, Mohammad F. Ottemann, Karen M. Liu, Jun Roujeinikova, Anna Proc Natl Acad Sci U S A Biological Sciences The flagellar motor stator is an ion channel nanomachine that assembles as a ring of the MotA(5)MotB(2) units at the flagellar base. The role of accessory proteins required for stator assembly and activation remains largely enigmatic. Here, we show that one such assembly factor, the conserved protein FliL, forms an integral part of the Helicobacter pylori flagellar motor in a position that colocalizes with the stator. Cryogenic electron tomography reconstructions of the intact motor in whole wild-type cells and cells lacking FliL revealed that the periplasmic domain of FliL (FliL-C) forms 18 circumferentially positioned rings integrated with the 18 MotAB units. FliL-C formed partial rings in the crystal, and the crystal structure–based full ring model was consistent with the shape of the rings observed in situ. Our data suggest that each FliL ring is coaxially sandwiched between the MotA ring and the dimeric periplasmic MotB moiety of the stator unit and that the central hole of the FliL ring has density that is consistent with the plug/linker region of MotB in its extended, active conformation. Significant structural similarities were found between FliL-C and stomatin/prohibitin/flotillin/HflK/C domains of scaffolding proteins, suggesting that FliL acts as a scaffold. The binding energy released upon association of FliL with the stator units could be used to power the release of the plug helices. The finding that isolated FliL-C forms stable partial rings provides an insight into the putative mechanism by which the FliL rings assemble around the stator units. National Academy of Sciences 2022-01-19 2022-01-25 /pmc/articles/PMC8794807/ /pubmed/35046042 http://dx.doi.org/10.1073/pnas.2118401119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Tachiyama, Shoichi Chan, Kar L. Liu, Xiaolin Hathroubi, Skander Peterson, Briana Khan, Mohammad F. Ottemann, Karen M. Liu, Jun Roujeinikova, Anna The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation |
title | The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation |
title_full | The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation |
title_fullStr | The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation |
title_full_unstemmed | The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation |
title_short | The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation |
title_sort | flagellar motor protein flil forms a scaffold of circumferentially positioned rings required for stator activation |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794807/ https://www.ncbi.nlm.nih.gov/pubmed/35046042 http://dx.doi.org/10.1073/pnas.2118401119 |
work_keys_str_mv | AT tachiyamashoichi theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT chankarl theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT liuxiaolin theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT hathroubiskander theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT petersonbriana theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT khanmohammadf theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT ottemannkarenm theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT liujun theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT roujeinikovaanna theflagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT tachiyamashoichi flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT chankarl flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT liuxiaolin flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT hathroubiskander flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT petersonbriana flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT khanmohammadf flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT ottemannkarenm flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT liujun flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation AT roujeinikovaanna flagellarmotorproteinflilformsascaffoldofcircumferentiallypositionedringsrequiredforstatoractivation |