Cargando…
Lipid membranes modulate the activity of RNA through sequence-dependent interactions
RNA is a ubiquitous biomolecule that can serve as both catalyst and information carrier. Understanding how RNA bioactivity is controlled is crucial for elucidating its physiological roles and potential applications in synthetic biology. Here, we show that lipid membranes can act as RNA organization...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794826/ https://www.ncbi.nlm.nih.gov/pubmed/35042820 http://dx.doi.org/10.1073/pnas.2119235119 |
_version_ | 1784640909166510080 |
---|---|
author | Czerniak, Tomasz Saenz, James P. |
author_facet | Czerniak, Tomasz Saenz, James P. |
author_sort | Czerniak, Tomasz |
collection | PubMed |
description | RNA is a ubiquitous biomolecule that can serve as both catalyst and information carrier. Understanding how RNA bioactivity is controlled is crucial for elucidating its physiological roles and potential applications in synthetic biology. Here, we show that lipid membranes can act as RNA organization platforms, introducing a mechanism for riboregulation. The activity of R3C ribozyme can be modified by the presence of lipid membranes, with direct RNA–lipid interactions dependent on RNA nucleotide content, base pairing, and length. In particular, the presence of guanine in short RNAs is crucial for RNA–lipid interactions, and G-quadruplex formation further promotes lipid binding. Lastly, by artificially modifying the R3C substrate sequence to enhance membrane binding, we generated a lipid-sensitive ribozyme reaction with riboswitch-like behavior. These findings introduce RNA–lipid interactions as a tool for developing synthetic riboswitches and RNA-based lipid biosensors and bear significant implications for RNA world scenarios for the origin of life. |
format | Online Article Text |
id | pubmed-8794826 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-87948262022-02-03 Lipid membranes modulate the activity of RNA through sequence-dependent interactions Czerniak, Tomasz Saenz, James P. Proc Natl Acad Sci U S A Biological Sciences RNA is a ubiquitous biomolecule that can serve as both catalyst and information carrier. Understanding how RNA bioactivity is controlled is crucial for elucidating its physiological roles and potential applications in synthetic biology. Here, we show that lipid membranes can act as RNA organization platforms, introducing a mechanism for riboregulation. The activity of R3C ribozyme can be modified by the presence of lipid membranes, with direct RNA–lipid interactions dependent on RNA nucleotide content, base pairing, and length. In particular, the presence of guanine in short RNAs is crucial for RNA–lipid interactions, and G-quadruplex formation further promotes lipid binding. Lastly, by artificially modifying the R3C substrate sequence to enhance membrane binding, we generated a lipid-sensitive ribozyme reaction with riboswitch-like behavior. These findings introduce RNA–lipid interactions as a tool for developing synthetic riboswitches and RNA-based lipid biosensors and bear significant implications for RNA world scenarios for the origin of life. National Academy of Sciences 2022-01-18 2022-01-25 /pmc/articles/PMC8794826/ /pubmed/35042820 http://dx.doi.org/10.1073/pnas.2119235119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Czerniak, Tomasz Saenz, James P. Lipid membranes modulate the activity of RNA through sequence-dependent interactions |
title | Lipid membranes modulate the activity of RNA through sequence-dependent interactions |
title_full | Lipid membranes modulate the activity of RNA through sequence-dependent interactions |
title_fullStr | Lipid membranes modulate the activity of RNA through sequence-dependent interactions |
title_full_unstemmed | Lipid membranes modulate the activity of RNA through sequence-dependent interactions |
title_short | Lipid membranes modulate the activity of RNA through sequence-dependent interactions |
title_sort | lipid membranes modulate the activity of rna through sequence-dependent interactions |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794826/ https://www.ncbi.nlm.nih.gov/pubmed/35042820 http://dx.doi.org/10.1073/pnas.2119235119 |
work_keys_str_mv | AT czerniaktomasz lipidmembranesmodulatetheactivityofrnathroughsequencedependentinteractions AT saenzjamesp lipidmembranesmodulatetheactivityofrnathroughsequencedependentinteractions |