Cargando…
Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas
An optical antenna can convert a propagative optical radiation into a localized excitation and the reciprocal. Although optical antennas can be readily created using resonant nanoparticles (metallic or dielectric) as elementary building blocks, the realization of antennas sustaining multiple resonan...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794834/ https://www.ncbi.nlm.nih.gov/pubmed/35046038 http://dx.doi.org/10.1073/pnas.2116833119 |
_version_ | 1784640911174533120 |
---|---|
author | Simon, Thomas Li, Xiaoyan Martin, Jérôme Khlopin, Dmitry Stéphan, Odile Kociak, Mathieu Gérard, Davy |
author_facet | Simon, Thomas Li, Xiaoyan Martin, Jérôme Khlopin, Dmitry Stéphan, Odile Kociak, Mathieu Gérard, Davy |
author_sort | Simon, Thomas |
collection | PubMed |
description | An optical antenna can convert a propagative optical radiation into a localized excitation and the reciprocal. Although optical antennas can be readily created using resonant nanoparticles (metallic or dielectric) as elementary building blocks, the realization of antennas sustaining multiple resonances over a broad range of frequencies remains a challenging task. Here, we use aluminum self-similar, fractal-like structures as broadband optical antennas. Using electron energy loss spectroscopy, we experimentally evidence that a single aluminum Cayley tree, a simple self-similar structure, sustains multiple plasmonic resonances. The spectral position of these resonances is scalable over a broad spectral range spanning two decades, from ultraviolet to midinfrared. Such multiresonant structures are highly desirable for applications ranging from nonlinear optics to light harvesting and photodetection, as well as surface-enhanced infrared absorption spectroscopy. |
format | Online Article Text |
id | pubmed-8794834 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-87948342022-07-19 Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas Simon, Thomas Li, Xiaoyan Martin, Jérôme Khlopin, Dmitry Stéphan, Odile Kociak, Mathieu Gérard, Davy Proc Natl Acad Sci U S A Physical Sciences An optical antenna can convert a propagative optical radiation into a localized excitation and the reciprocal. Although optical antennas can be readily created using resonant nanoparticles (metallic or dielectric) as elementary building blocks, the realization of antennas sustaining multiple resonances over a broad range of frequencies remains a challenging task. Here, we use aluminum self-similar, fractal-like structures as broadband optical antennas. Using electron energy loss spectroscopy, we experimentally evidence that a single aluminum Cayley tree, a simple self-similar structure, sustains multiple plasmonic resonances. The spectral position of these resonances is scalable over a broad spectral range spanning two decades, from ultraviolet to midinfrared. Such multiresonant structures are highly desirable for applications ranging from nonlinear optics to light harvesting and photodetection, as well as surface-enhanced infrared absorption spectroscopy. National Academy of Sciences 2022-01-19 2022-01-25 /pmc/articles/PMC8794834/ /pubmed/35046038 http://dx.doi.org/10.1073/pnas.2116833119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Simon, Thomas Li, Xiaoyan Martin, Jérôme Khlopin, Dmitry Stéphan, Odile Kociak, Mathieu Gérard, Davy Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas |
title | Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas |
title_full | Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas |
title_fullStr | Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas |
title_full_unstemmed | Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas |
title_short | Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas |
title_sort | aluminum cayley trees as scalable, broadband, multiresonant optical antennas |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794834/ https://www.ncbi.nlm.nih.gov/pubmed/35046038 http://dx.doi.org/10.1073/pnas.2116833119 |
work_keys_str_mv | AT simonthomas aluminumcayleytreesasscalablebroadbandmultiresonantopticalantennas AT lixiaoyan aluminumcayleytreesasscalablebroadbandmultiresonantopticalantennas AT martinjerome aluminumcayleytreesasscalablebroadbandmultiresonantopticalantennas AT khlopindmitry aluminumcayleytreesasscalablebroadbandmultiresonantopticalantennas AT stephanodile aluminumcayleytreesasscalablebroadbandmultiresonantopticalantennas AT kociakmathieu aluminumcayleytreesasscalablebroadbandmultiresonantopticalantennas AT gerarddavy aluminumcayleytreesasscalablebroadbandmultiresonantopticalantennas |