Cargando…
Surrogate gradients for analog neuromorphic computing
To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum, but communicate with spikes, binary events in time. Analog neuromorphic hardware uses the same principles to emulate spiking neural networks with exceptional energy efficiency. Howe...
Autores principales: | Cramer, Benjamin, Billaudelle, Sebastian, Kanya, Simeon, Leibfried, Aron, Grübl, Andreas, Karasenko, Vitali, Pehle, Christian, Schreiber, Korbinian, Stradmann, Yannik, Weis, Johannes, Schemmel, Johannes, Zenke, Friedemann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794842/ https://www.ncbi.nlm.nih.gov/pubmed/35042792 http://dx.doi.org/10.1073/pnas.2109194119 |
Ejemplares similares
-
The BrainScaleS-2 Accelerated Neuromorphic System With Hybrid Plasticity
por: Pehle, Christian, et al.
Publicado: (2022) -
A Scalable Approach to Modeling on Accelerated Neuromorphic Hardware
por: Müller, Eric, et al.
Publicado: (2022) -
Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
por: Wunderlich, Timo, et al.
Publicado: (2019) -
Six Networks on a Universal Neuromorphic Computing Substrate
por: Pfeil, Thomas, et al.
Publicado: (2013) -
Control of criticality and computation in spiking neuromorphic networks with plasticity
por: Cramer, Benjamin, et al.
Publicado: (2020)