Cargando…
Using deep learning to assist readers during the arbitration process: a lesion-based retrospective evaluation of breast cancer screening performance
OBJECTIVES: To evaluate if artificial intelligence (AI) can discriminate recalled benign from recalled malignant mammographic screening abnormalities to improve screening performance. METHODS: A total of 2257 full-field digital mammography screening examinations, obtained 2011–2013, of women aged 50...
Autores principales: | Kerschke, Laura, Weigel, Stefanie, Rodriguez-Ruiz, Alejandro, Karssemeijer, Nico, Heindel, Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8794989/ https://www.ncbi.nlm.nih.gov/pubmed/34383147 http://dx.doi.org/10.1007/s00330-021-08217-w |
Ejemplares similares
-
Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study
por: van Winkel, Suzanne L., et al.
Publicado: (2021) -
Optimising breast cancer screening reading: blinding the second reader to the first reader’s decisions
por: Cooper, Jennifer A., et al.
Publicado: (2021) -
Prospective trial comparing full-field digital mammography (FFDM) versus combined FFDM and tomosynthesis in a population-based screening programme using independent double reading with arbitration
por: Skaane, Per, et al.
Publicado: (2013) -
New reconstruction algorithm for digital breast tomosynthesis: better
image quality for humans and computers
por: Rodriguez-Ruiz, Alejandro, et al.
Publicado: (2017) -
One-view digital breast tomosynthesis as a stand-alone modality for breast cancer detection: do we need more?
por: Rodriguez-Ruiz, Alejandro, et al.
Publicado: (2017)