Cargando…

A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study

PURPOSE: This study investigated the feasibility of a new image analysis technique (radiomics) on conventional MRI for the computer-aided diagnosis of Menière’s disease. MATERIALS AND METHODS: A retrospective, multicentric diagnostic case–control study was performed. This study included 120 patients...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Lubbe, Marly F. J. A., Vaidyanathan, Akshayaa, de Wit, Marjolein, van den Burg, Elske L., Postma, Alida A., Bruintjes, Tjasse D., Bilderbeek-Beckers, Monique A. L., Dammeijer, Patrick F. M., Bossche, Stephanie Vanden, Van Rompaey, Vincent, Lambin, Philippe, van Hoof, Marc, van de Berg, Raymond
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Milan 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795017/
https://www.ncbi.nlm.nih.gov/pubmed/34822101
http://dx.doi.org/10.1007/s11547-021-01425-w
_version_ 1784640954280443904
author van der Lubbe, Marly F. J. A.
Vaidyanathan, Akshayaa
de Wit, Marjolein
van den Burg, Elske L.
Postma, Alida A.
Bruintjes, Tjasse D.
Bilderbeek-Beckers, Monique A. L.
Dammeijer, Patrick F. M.
Bossche, Stephanie Vanden
Van Rompaey, Vincent
Lambin, Philippe
van Hoof, Marc
van de Berg, Raymond
author_facet van der Lubbe, Marly F. J. A.
Vaidyanathan, Akshayaa
de Wit, Marjolein
van den Burg, Elske L.
Postma, Alida A.
Bruintjes, Tjasse D.
Bilderbeek-Beckers, Monique A. L.
Dammeijer, Patrick F. M.
Bossche, Stephanie Vanden
Van Rompaey, Vincent
Lambin, Philippe
van Hoof, Marc
van de Berg, Raymond
author_sort van der Lubbe, Marly F. J. A.
collection PubMed
description PURPOSE: This study investigated the feasibility of a new image analysis technique (radiomics) on conventional MRI for the computer-aided diagnosis of Menière’s disease. MATERIALS AND METHODS: A retrospective, multicentric diagnostic case–control study was performed. This study included 120 patients with unilateral or bilateral Menière’s disease and 140 controls from four centers in the Netherlands and Belgium. Multiple radiomic features were extracted from conventional MRI scans and used to train a machine learning-based, multi-layer perceptron classification model to distinguish patients with Menière’s disease from controls. The primary outcomes were accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the classification model. RESULTS: The classification accuracy of the machine learning model on the test set was 82%, with a sensitivity of 83%, and a specificity of 82%. The positive and negative predictive values were 71%, and 90%, respectively. CONCLUSION: The multi-layer perceptron classification model yielded a precise, high-diagnostic performance in identifying patients with Menière’s disease based on radiomic features extracted from conventional T2-weighted MRI scans. In the future, radiomics might serve as a fast and noninvasive decision support system, next to clinical evaluation in the diagnosis of Menière’s disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11547-021-01425-w.
format Online
Article
Text
id pubmed-8795017
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Milan
record_format MEDLINE/PubMed
spelling pubmed-87950172022-02-02 A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study van der Lubbe, Marly F. J. A. Vaidyanathan, Akshayaa de Wit, Marjolein van den Burg, Elske L. Postma, Alida A. Bruintjes, Tjasse D. Bilderbeek-Beckers, Monique A. L. Dammeijer, Patrick F. M. Bossche, Stephanie Vanden Van Rompaey, Vincent Lambin, Philippe van Hoof, Marc van de Berg, Raymond Radiol Med Magnetic Resonance Imaging PURPOSE: This study investigated the feasibility of a new image analysis technique (radiomics) on conventional MRI for the computer-aided diagnosis of Menière’s disease. MATERIALS AND METHODS: A retrospective, multicentric diagnostic case–control study was performed. This study included 120 patients with unilateral or bilateral Menière’s disease and 140 controls from four centers in the Netherlands and Belgium. Multiple radiomic features were extracted from conventional MRI scans and used to train a machine learning-based, multi-layer perceptron classification model to distinguish patients with Menière’s disease from controls. The primary outcomes were accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the classification model. RESULTS: The classification accuracy of the machine learning model on the test set was 82%, with a sensitivity of 83%, and a specificity of 82%. The positive and negative predictive values were 71%, and 90%, respectively. CONCLUSION: The multi-layer perceptron classification model yielded a precise, high-diagnostic performance in identifying patients with Menière’s disease based on radiomic features extracted from conventional T2-weighted MRI scans. In the future, radiomics might serve as a fast and noninvasive decision support system, next to clinical evaluation in the diagnosis of Menière’s disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11547-021-01425-w. Springer Milan 2021-11-25 2022 /pmc/articles/PMC8795017/ /pubmed/34822101 http://dx.doi.org/10.1007/s11547-021-01425-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Magnetic Resonance Imaging
van der Lubbe, Marly F. J. A.
Vaidyanathan, Akshayaa
de Wit, Marjolein
van den Burg, Elske L.
Postma, Alida A.
Bruintjes, Tjasse D.
Bilderbeek-Beckers, Monique A. L.
Dammeijer, Patrick F. M.
Bossche, Stephanie Vanden
Van Rompaey, Vincent
Lambin, Philippe
van Hoof, Marc
van de Berg, Raymond
A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
title A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
title_full A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
title_fullStr A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
title_full_unstemmed A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
title_short A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
title_sort non-invasive, automated diagnosis of menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: a multicentric, case-controlled feasibility study
topic Magnetic Resonance Imaging
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795017/
https://www.ncbi.nlm.nih.gov/pubmed/34822101
http://dx.doi.org/10.1007/s11547-021-01425-w
work_keys_str_mv AT vanderlubbemarlyfja anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vaidyanathanakshayaa anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT dewitmarjolein anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vandenburgelskel anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT postmaalidaa anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT bruintjestjassed anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT bilderbeekbeckersmoniqueal anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT dammeijerpatrickfm anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT bosschestephanievanden anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vanrompaeyvincent anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT lambinphilippe anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vanhoofmarc anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vandebergraymond anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vanderlubbemarlyfja noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vaidyanathanakshayaa noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT dewitmarjolein noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vandenburgelskel noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT postmaalidaa noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT bruintjestjassed noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT bilderbeekbeckersmoniqueal noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT dammeijerpatrickfm noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT bosschestephanievanden noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vanrompaeyvincent noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT lambinphilippe noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vanhoofmarc noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy
AT vandebergraymond noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy