Cargando…
A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
PURPOSE: This study investigated the feasibility of a new image analysis technique (radiomics) on conventional MRI for the computer-aided diagnosis of Menière’s disease. MATERIALS AND METHODS: A retrospective, multicentric diagnostic case–control study was performed. This study included 120 patients...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795017/ https://www.ncbi.nlm.nih.gov/pubmed/34822101 http://dx.doi.org/10.1007/s11547-021-01425-w |
_version_ | 1784640954280443904 |
---|---|
author | van der Lubbe, Marly F. J. A. Vaidyanathan, Akshayaa de Wit, Marjolein van den Burg, Elske L. Postma, Alida A. Bruintjes, Tjasse D. Bilderbeek-Beckers, Monique A. L. Dammeijer, Patrick F. M. Bossche, Stephanie Vanden Van Rompaey, Vincent Lambin, Philippe van Hoof, Marc van de Berg, Raymond |
author_facet | van der Lubbe, Marly F. J. A. Vaidyanathan, Akshayaa de Wit, Marjolein van den Burg, Elske L. Postma, Alida A. Bruintjes, Tjasse D. Bilderbeek-Beckers, Monique A. L. Dammeijer, Patrick F. M. Bossche, Stephanie Vanden Van Rompaey, Vincent Lambin, Philippe van Hoof, Marc van de Berg, Raymond |
author_sort | van der Lubbe, Marly F. J. A. |
collection | PubMed |
description | PURPOSE: This study investigated the feasibility of a new image analysis technique (radiomics) on conventional MRI for the computer-aided diagnosis of Menière’s disease. MATERIALS AND METHODS: A retrospective, multicentric diagnostic case–control study was performed. This study included 120 patients with unilateral or bilateral Menière’s disease and 140 controls from four centers in the Netherlands and Belgium. Multiple radiomic features were extracted from conventional MRI scans and used to train a machine learning-based, multi-layer perceptron classification model to distinguish patients with Menière’s disease from controls. The primary outcomes were accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the classification model. RESULTS: The classification accuracy of the machine learning model on the test set was 82%, with a sensitivity of 83%, and a specificity of 82%. The positive and negative predictive values were 71%, and 90%, respectively. CONCLUSION: The multi-layer perceptron classification model yielded a precise, high-diagnostic performance in identifying patients with Menière’s disease based on radiomic features extracted from conventional T2-weighted MRI scans. In the future, radiomics might serve as a fast and noninvasive decision support system, next to clinical evaluation in the diagnosis of Menière’s disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11547-021-01425-w. |
format | Online Article Text |
id | pubmed-8795017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Milan |
record_format | MEDLINE/PubMed |
spelling | pubmed-87950172022-02-02 A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study van der Lubbe, Marly F. J. A. Vaidyanathan, Akshayaa de Wit, Marjolein van den Burg, Elske L. Postma, Alida A. Bruintjes, Tjasse D. Bilderbeek-Beckers, Monique A. L. Dammeijer, Patrick F. M. Bossche, Stephanie Vanden Van Rompaey, Vincent Lambin, Philippe van Hoof, Marc van de Berg, Raymond Radiol Med Magnetic Resonance Imaging PURPOSE: This study investigated the feasibility of a new image analysis technique (radiomics) on conventional MRI for the computer-aided diagnosis of Menière’s disease. MATERIALS AND METHODS: A retrospective, multicentric diagnostic case–control study was performed. This study included 120 patients with unilateral or bilateral Menière’s disease and 140 controls from four centers in the Netherlands and Belgium. Multiple radiomic features were extracted from conventional MRI scans and used to train a machine learning-based, multi-layer perceptron classification model to distinguish patients with Menière’s disease from controls. The primary outcomes were accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the classification model. RESULTS: The classification accuracy of the machine learning model on the test set was 82%, with a sensitivity of 83%, and a specificity of 82%. The positive and negative predictive values were 71%, and 90%, respectively. CONCLUSION: The multi-layer perceptron classification model yielded a precise, high-diagnostic performance in identifying patients with Menière’s disease based on radiomic features extracted from conventional T2-weighted MRI scans. In the future, radiomics might serve as a fast and noninvasive decision support system, next to clinical evaluation in the diagnosis of Menière’s disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11547-021-01425-w. Springer Milan 2021-11-25 2022 /pmc/articles/PMC8795017/ /pubmed/34822101 http://dx.doi.org/10.1007/s11547-021-01425-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Magnetic Resonance Imaging van der Lubbe, Marly F. J. A. Vaidyanathan, Akshayaa de Wit, Marjolein van den Burg, Elske L. Postma, Alida A. Bruintjes, Tjasse D. Bilderbeek-Beckers, Monique A. L. Dammeijer, Patrick F. M. Bossche, Stephanie Vanden Van Rompaey, Vincent Lambin, Philippe van Hoof, Marc van de Berg, Raymond A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study |
title | A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study |
title_full | A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study |
title_fullStr | A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study |
title_full_unstemmed | A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study |
title_short | A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study |
title_sort | non-invasive, automated diagnosis of menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: a multicentric, case-controlled feasibility study |
topic | Magnetic Resonance Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795017/ https://www.ncbi.nlm.nih.gov/pubmed/34822101 http://dx.doi.org/10.1007/s11547-021-01425-w |
work_keys_str_mv | AT vanderlubbemarlyfja anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vaidyanathanakshayaa anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT dewitmarjolein anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vandenburgelskel anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT postmaalidaa anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT bruintjestjassed anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT bilderbeekbeckersmoniqueal anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT dammeijerpatrickfm anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT bosschestephanievanden anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vanrompaeyvincent anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT lambinphilippe anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vanhoofmarc anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vandebergraymond anoninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vanderlubbemarlyfja noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vaidyanathanakshayaa noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT dewitmarjolein noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vandenburgelskel noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT postmaalidaa noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT bruintjestjassed noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT bilderbeekbeckersmoniqueal noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT dammeijerpatrickfm noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT bosschestephanievanden noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vanrompaeyvincent noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT lambinphilippe noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vanhoofmarc noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy AT vandebergraymond noninvasiveautomateddiagnosisofmenieresdiseaseusingradiomicsandmachinelearningonconventionalmagneticresonanceimagingamulticentriccasecontrolledfeasibilitystudy |